home *** CD-ROM | disk | FTP | other *** search
/ PC Extra Super CD 1998 January / PCPLUS131.iso / DJGPP / V2 / DJLSR201.ZIP / src / libm / src / e_pow.c < prev    next >
Encoding:
C/C++ Source or Header  |  1994-09-25  |  10.0 KB  |  310 lines

  1. /* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
  2. /* @(#)e_pow.c 5.1 93/09/24 */
  3. /*
  4.  * ====================================================
  5.  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  6.  *
  7.  * Developed at SunPro, a Sun Microsystems, Inc. business.
  8.  * Permission to use, copy, modify, and distribute this
  9.  * software is freely granted, provided that this notice 
  10.  * is preserved.
  11.  * ====================================================
  12.  */
  13.  
  14. #if defined(LIBM_SCCS) && !defined(lint)
  15. static char rcsid[] = "$Id: e_pow.c,v 1.6 1994/09/13 00:40:33 jtc Exp $";
  16. #endif
  17.  
  18. /* __ieee754_pow(x,y) return x**y
  19.  *
  20.  *              n
  21.  * Method:  Let x =  2   * (1+f)
  22.  *    1. Compute and return log2(x) in two pieces:
  23.  *        log2(x) = w1 + w2,
  24.  *       where w1 has 53-24 = 29 bit trailing zeros.
  25.  *    2. Perform y*log2(x) = n+y' by simulating muti-precision 
  26.  *       arithmetic, where |y'|<=0.5.
  27.  *    3. Return x**y = 2**n*exp(y'*log2)
  28.  *
  29.  * Special cases:
  30.  *    1.  (anything) ** 0  is 1
  31.  *    2.  (anything) ** 1  is itself
  32.  *    3.  (anything) ** NAN is NAN
  33.  *    4.  NAN ** (anything except 0) is NAN
  34.  *    5.  +-(|x| > 1) **  +INF is +INF
  35.  *    6.  +-(|x| > 1) **  -INF is +0
  36.  *    7.  +-(|x| < 1) **  +INF is +0
  37.  *    8.  +-(|x| < 1) **  -INF is +INF
  38.  *    9.  +-1         ** +-INF is NAN
  39.  *    10. +0 ** (+anything except 0, NAN)               is +0
  40.  *    11. -0 ** (+anything except 0, NAN, odd integer)  is +0
  41.  *    12. +0 ** (-anything except 0, NAN)               is +INF
  42.  *    13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
  43.  *    14. -0 ** (odd integer) = -( +0 ** (odd integer) )
  44.  *    15. +INF ** (+anything except 0,NAN) is +INF
  45.  *    16. +INF ** (-anything except 0,NAN) is +0
  46.  *    17. -INF ** (anything)  = -0 ** (-anything)
  47.  *    18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
  48.  *    19. (-anything except 0 and inf) ** (non-integer) is NAN
  49.  *
  50.  * Accuracy:
  51.  *    pow(x,y) returns x**y nearly rounded. In particular
  52.  *            pow(integer,integer)
  53.  *    always returns the correct integer provided it is 
  54.  *    representable.
  55.  *
  56.  * Constants :
  57.  * The hexadecimal values are the intended ones for the following 
  58.  * constants. The decimal values may be used, provided that the 
  59.  * compiler will convert from decimal to binary accurately enough 
  60.  * to produce the hexadecimal values shown.
  61.  */
  62.  
  63. #include "math.h"
  64. #include "math_private.h"
  65.  
  66. #ifdef __STDC__
  67. static const double 
  68. #else
  69. static double 
  70. #endif
  71. bp[] = {1.0, 1.5,},
  72. dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
  73. dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
  74. zero    =  0.0,
  75. one    =  1.0,
  76. two    =  2.0,
  77. two53    =  9007199254740992.0,    /* 0x43400000, 0x00000000 */
  78. huge    =  1.0e300,
  79. tiny    =  1.0e-300,
  80.     /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
  81. L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
  82. L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
  83. L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
  84. L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
  85. L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
  86. L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
  87. P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
  88. P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
  89. P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
  90. P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
  91. P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
  92. lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
  93. lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
  94. lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
  95. ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
  96. cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
  97. cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
  98. cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
  99. ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
  100. ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
  101. ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
  102.  
  103. #ifdef __STDC__
  104.     double __ieee754_pow(double x, double y)
  105. #else
  106.     double __ieee754_pow(x,y)
  107.     double x, y;
  108. #endif
  109. {
  110.     double z,ax,z_h,z_l,p_h,p_l;
  111.     double y1,t1,t2,r,s,t,u,v,w;
  112.     int32_t i,j,k,yisint,n;
  113.     int32_t hx,hy,ix,iy;
  114.     u_int32_t lx,ly;
  115.  
  116.     EXTRACT_WORDS(hx,lx,x);
  117.     EXTRACT_WORDS(hy,ly,y);
  118.     ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
  119.  
  120.     /* y==zero: x**0 = 1 */
  121.     if((iy|ly)==0) return one;     
  122.  
  123.     /* +-NaN return x+y */
  124.     if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
  125.        iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) 
  126.         return x+y;    
  127.  
  128.     /* determine if y is an odd int when x < 0
  129.      * yisint = 0    ... y is not an integer
  130.      * yisint = 1    ... y is an odd int
  131.      * yisint = 2    ... y is an even int
  132.      */
  133.     yisint  = 0;
  134.     if(hx<0) {    
  135.         if(iy>=0x43400000) yisint = 2; /* even integer y */
  136.         else if(iy>=0x3ff00000) {
  137.         k = (iy>>20)-0x3ff;       /* exponent */
  138.         if(k>20) {
  139.             j = ly>>(52-k);
  140.             if((j<<(52-k))==ly) yisint = 2-(j&1);
  141.         } else if(ly==0) {
  142.             j = iy>>(20-k);
  143.             if((j<<(20-k))==iy) yisint = 2-(j&1);
  144.         }
  145.         }        
  146.     } 
  147.  
  148.     /* special value of y */
  149.     if(ly==0) {     
  150.         if (iy==0x7ff00000) {    /* y is +-inf */
  151.             if(((ix-0x3ff00000)|lx)==0)
  152.             return  y - y;    /* inf**+-1 is NaN */
  153.             else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
  154.             return (hy>=0)? y: zero;
  155.             else            /* (|x|<1)**-,+inf = inf,0 */
  156.             return (hy<0)?-y: zero;
  157.         } 
  158.         if(iy==0x3ff00000) {    /* y is  +-1 */
  159.         if(hy<0) return one/x; else return x;
  160.         }
  161.         if(hy==0x40000000) return x*x; /* y is  2 */
  162.         if(hy==0x3fe00000) {    /* y is  0.5 */
  163.         if(hx>=0)    /* x >= +0 */
  164.         return sqrt(x);    
  165.         }
  166.     }
  167.  
  168.     ax   = fabs(x);
  169.     /* special value of x */
  170.     if(lx==0) {
  171.         if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
  172.         z = ax;            /*x is +-0,+-inf,+-1*/
  173.         if(hy<0) z = one/z;    /* z = (1/|x|) */
  174.         if(hx<0) {
  175.             if(((ix-0x3ff00000)|yisint)==0) {
  176.             z = (z-z)/(z-z); /* (-1)**non-int is NaN */
  177.             } else if(yisint==1) 
  178.             z = -z;        /* (x<0)**odd = -(|x|**odd) */
  179.         }
  180.         return z;
  181.         }
  182.     }
  183.     
  184.     /* (x<0)**(non-int) is NaN */
  185.     if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
  186.  
  187.     /* |y| is huge */
  188.     if(iy>0x41e00000) { /* if |y| > 2**31 */
  189.         if(iy>0x43f00000){    /* if |y| > 2**64, must o/uflow */
  190.         if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
  191.         if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
  192.         }
  193.     /* over/underflow if x is not close to one */
  194.         if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
  195.         if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
  196.     /* now |1-x| is tiny <= 2**-20, suffice to compute 
  197.        log(x) by x-x^2/2+x^3/3-x^4/4 */
  198.         t = x-1;        /* t has 20 trailing zeros */
  199.         w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
  200.         u = ivln2_h*t;    /* ivln2_h has 21 sig. bits */
  201.         v = t*ivln2_l-w*ivln2;
  202.         t1 = u+v;
  203.         SET_LOW_WORD(t1,0);
  204.         t2 = v-(t1-u);
  205.     } else {
  206.         double s2,s_h,s_l,t_h,t_l;
  207.         n = 0;
  208.     /* take care subnormal number */
  209.         if(ix<0x00100000)
  210.         {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
  211.         n  += ((ix)>>20)-0x3ff;
  212.         j  = ix&0x000fffff;
  213.     /* determine interval */
  214.         ix = j|0x3ff00000;        /* normalize ix */
  215.         if(j<=0x3988E) k=0;        /* |x|<sqrt(3/2) */
  216.         else if(j<0xBB67A) k=1;    /* |x|<sqrt(3)   */
  217.         else {k=0;n+=1;ix -= 0x00100000;}
  218.         SET_HIGH_WORD(ax,ix);
  219.  
  220.     /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
  221.         u = ax-bp[k];        /* bp[0]=1.0, bp[1]=1.5 */
  222.         v = one/(ax+bp[k]);
  223.         s = u*v;
  224.         s_h = s;
  225.         SET_LOW_WORD(s_h,0);
  226.     /* t_h=ax+bp[k] High */
  227.         t_h = zero;
  228.         SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
  229.         t_l = ax - (t_h-bp[k]);
  230.         s_l = v*((u-s_h*t_h)-s_h*t_l);
  231.     /* compute log(ax) */
  232.         s2 = s*s;
  233.         r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
  234.         r += s_l*(s_h+s);
  235.         s2  = s_h*s_h;
  236.         t_h = 3.0+s2+r;
  237.         SET_LOW_WORD(t_h,0);
  238.         t_l = r-((t_h-3.0)-s2);
  239.     /* u+v = s*(1+...) */
  240.         u = s_h*t_h;
  241.         v = s_l*t_h+t_l*s;
  242.     /* 2/(3log2)*(s+...) */
  243.         p_h = u+v;
  244.         SET_LOW_WORD(p_h,0);
  245.         p_l = v-(p_h-u);
  246.         z_h = cp_h*p_h;        /* cp_h+cp_l = 2/(3*log2) */
  247.         z_l = cp_l*p_h+p_l*cp+dp_l[k];
  248.     /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
  249.         t = (double)n;
  250.         t1 = (((z_h+z_l)+dp_h[k])+t);
  251.         SET_LOW_WORD(t1,0);
  252.         t2 = z_l-(((t1-t)-dp_h[k])-z_h);
  253.     }
  254.  
  255.     s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
  256.     if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
  257.         s = -one;/* (-ve)**(odd int) */
  258.  
  259.     /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
  260.     y1  = y;
  261.     SET_LOW_WORD(y1,0);
  262.     p_l = (y-y1)*t1+y*t2;
  263.     p_h = y1*t1;
  264.     z = p_l+p_h;
  265.     EXTRACT_WORDS(j,i,z);
  266.     if (j>=0x40900000) {                /* z >= 1024 */
  267.         if(((j-0x40900000)|i)!=0)            /* if z > 1024 */
  268.         return s*huge*huge;            /* overflow */
  269.         else {
  270.         if(p_l+ovt>z-p_h) return s*huge*huge;    /* overflow */
  271.         }
  272.     } else if((j&0x7fffffff)>=0x4090cc00 ) {    /* z <= -1075 */
  273.         if(((j-0xc090cc00)|i)!=0)         /* z < -1075 */
  274.         return s*tiny*tiny;        /* underflow */
  275.         else {
  276.         if(p_l<=z-p_h) return s*tiny*tiny;    /* underflow */
  277.         }
  278.     }
  279.     /*
  280.      * compute 2**(p_h+p_l)
  281.      */
  282.     i = j&0x7fffffff;
  283.     k = (i>>20)-0x3ff;
  284.     n = 0;
  285.     if(i>0x3fe00000) {        /* if |z| > 0.5, set n = [z+0.5] */
  286.         n = j+(0x00100000>>(k+1));
  287.         k = ((n&0x7fffffff)>>20)-0x3ff;    /* new k for n */
  288.         t = zero;
  289.         SET_HIGH_WORD(t,n&~(0x000fffff>>k));
  290.         n = ((n&0x000fffff)|0x00100000)>>(20-k);
  291.         if(j<0) n = -n;
  292.         p_h -= t;
  293.     } 
  294.     t = p_l+p_h;
  295.     SET_LOW_WORD(t,0);
  296.     u = t*lg2_h;
  297.     v = (p_l-(t-p_h))*lg2+t*lg2_l;
  298.     z = u+v;
  299.     w = v-(z-u);
  300.     t  = z*z;
  301.     t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
  302.     r  = (z*t1)/(t1-two)-(w+z*w);
  303.     z  = one-(r-z);
  304.     GET_HIGH_WORD(j,z);
  305.     j += (n<<20);
  306.     if((j>>20)<=0) z = scalbn(z,n);    /* subnormal output */
  307.     else SET_HIGH_WORD(z,j);
  308.     return s*z;
  309. }
  310.