home *** CD-ROM | disk | FTP | other *** search
- ; Generate a table of squares and cubes
- VECTOR([x,x^2,x^3],x,1,8)
-
- ; Define MATRIX for generating matrices
- MATRIX(z,i,m,j,n):=VECTOR(VECTOR(z,j,1,n),i,1,m)
-
- ; Generate a 2 by 3 matrix
- MATRIX(i-j,i,2,j,3)
-
- ; Generate the 3 by 3 identity matrix
- IDENTITY_MATRIX(3)
-
- ; Element [1,2] of a matrix
- ELEMENT([[a, b, c], [1, 2, 3]],1,2)
-
- ; Row 2 of a matrix
- ELEMENT([[a, b, c], [1, 2, 3]],2)
-
- ; Matrix addition and multiplication by scalar
- 2*[[a, 2], [3, b]]+[[1, 3], [a, -b]]
-
- ; Dot product (inner product) of two vectors
- [2, a, 5].[2*a, 3, -1]
-
- ; Dot product of two matrices
- [[a, b], [c, d]].[[x], [y]]
-
- ; Cross product of two vectors
- CROSS([1, 2, 3],[a, b, c])
-
- ; Number of elements of a vector
- DIMENSION([a, b, c])
-
- ; Number of rows of a matrix
- DIMENSION([[1, 2, 3], [4, 5, 6]])
-
- ; Define OUTER to compute the outer product
- OUTER(v,w):=VECTOR([ELEMENT(v,i)],i,DIMENSION(v)).[w]
-
- ; The outer product of two vectors
- OUTER([a, b, c], [2, 3, 4])
-
- ; Transpose of a matrix
- [[a, b, c], [1, 2, 3]]`
-
- ; Column 3 of a matrix
- ELEMENT([[a, b, c], [1, 2, 3]]`,3)
-
- ; Determinant of a square matrix
- DET([[2, 3], [a, b]])
-
- ; Try factoring this determinant
- DET [[1, a, a, a], [1, x, a, a], [1, a, x, a], [1, a, a, x]]
-
- DET [[x, 1, 1, 1, 1], [1, x, 1, 1, 1], [1, 1, x, 1, 1], [1, 1, 1, x, 1], [1, 1, 1, 1, x]]
-
- ; Sum of the elements on the main diagonal
- TRACE([[a, b], [1, 2]])
-
- ; Matrix inverse
- [[a, b], [2, 3]]^(-1)
-
- ; A matrix dotted with its inverse is an identity matrix
- [[a, b], [c, d]].[[a, b], [c, d]]^(-1)
-
- ; Using an inverse matrix to solve the system a x + b y = e, c x + d y = f
- [[a, b], [c, d]]^(-1).[[e], [f]]
-
- ; Reduce matrices to row echelon form
- ROW_REDUCE([[2, 4], [3, 6]], [[6], [9]])
-
- ; Characteristic polynomial of a square matrix
- CHARPOLY([[a, b], [b, a]],z)
-
- ; Eigenvalues of a square matrix
- EIGENVALUES([[a, b], [b, a]])
-
- ; Vector algebra simplification
- a.(b+c)-(b`.a`)`
-
- ; Gradient of an expression
- GRAD(x+y^2+z^3)
-
- ; Divergence of a vector
- DIV([1, 2*y, 3*z^2])
-
- ; Divergence of the gradient of an expression
- LAPLACIAN(x+y^2+z^3)
-
- ; Curl of a vector
- CURL([y^2, 2*x*z, 0])
-
- ; Scalar potential of a vector
- POTENTIAL([1, 2*y, 3*z^2])
-
- ; Vector potential of a vector
- VECTOR_POTENTIAL([-2*x, 0, 2*z-2*y])