home *** CD-ROM | disk | FTP | other *** search
- .MCD 20000 0
- .CMD PLOTFORMAT logs=0,0 subdivs=1,1 size=5,15 type=l
- .CMD FORMAT rd=d ct=10 im=i et=3 zt=15 pr=3 mass length time charge
- .CMD SET ORIGIN 0
- .CMD SET TOL 0.001000
- .CMD MARGIN 0
- .CMD LINELENGTH 78
- .CMD SET PRNCOLWIDTH 8
- .CMD SET PRNPRECISION 4
- .TXT 0 40 1 39
- a1,38,49,37
- Copyright (c) 1988 by MathSoft, Inc.
- .TXT 1 40 1 45
- a1,44,78,43
- /EQUATIONS FOR GENERATING POISSON DEVIATES
- .TXT 1 -62 1 44
- a1,43,78,42
- RANDOM DEVIATES WITH POISSON DISTRIBUTION
- .TXT 2 -18 1 75
- a1,74,72,73
- This document generates a vector of Poisson distributed random deviates.
- .EQN 2 1 1 13
- NRAND~400
- .TXT 0 16 1 48
- a1,47,60,46
- <-- number of random deviates to be generated
- .TXT 1 63 2 75
- a2,74,78,101
- Define interval vector using the cumulative distribution and define the
- corresponding count vector:
- .EQN 1 -79 1 7
- ▐~1
- .TXT 0 8 1 26
- a1,25,69,24
- <-- Poisson parameter ▐
- .EQN 0 32 1 7
- M~6
- .TXT 0 8 1 22
- a1,21,29,20
- <-- largest deviate
- .TXT 2 -48 2 77
- a2,76,77,147
- The tables give the fraction of deviates equal to K and the corresponding
- Poisson probabilities P(K). The plot shows the comparison graphically.
- .EQN 0 79 1 15
- I~0;M+1
- .EQN 0 16 1 11
- K~0;M
- .EQN 2 -16 5 28
- INT[I~K$(K<I)*e^-▐*▐^K/K!
- .EQN 1 -68 9 9
- D[K=
- .EQN 1 -10 8 5
- K=
- .EQN 0 21 8 9
- P(K){19027}=
- .EQN 0 18 10 38
- .8&0&D[K,P(K){1,1,9,28,s}@M&0&K
- .EQN 0 74 2 12
- INT[(M+1)~1
- .EQN 5 -35 2 10
- OUT[K~K
- .TXT 4 -79 1 15
- a1,14,77,13
- [Ctrl][PgDn]
- .TXT 0 80 1 15
- a1,14,78,13
- [Ctrl][PgDn]
- .TXT 2 -80 1 44
- a1,43,77,42
- The Poisson deviates are in the vector V:
- .TXT 0 81 1 45
- a1,44,78,43
- Define a vector of uniform random numbers:
- .EQN 2 -81 201 11
- V=?
- .EQN 0 81 1 19
- J~0;NRAND-1
- .EQN 3 0 2 13
- R[J~rnd(1)
- .TXT 4 0 1 34
- a1,33,78,32
- V holds NRAND Poisson deviates:
- .EQN 2 0 3 30
- V[J~(hist(INT,(R{51}){52}J))*OUT
- .TXT 5 -1 1 15
- a1,14,78,13
- [Ctrl][PgDn]
- .TXT 2 0 1 30
- a1,29,78,28
- Prepare the histogram plot:
- .EQN 2 0 2 11
- BINS[I~I
- .EQN 3 1 3 18
- D~hist(BINS,V)/NRAND
- .TXT 4 -2 1 39
- a1,38,78,37
- Define the Poisson density function.
- .EQN 2 25 4 15
- P(k)~e^-▐*▐^k/k!
-