home *** CD-ROM | disk | FTP | other *** search
- .MCD 25000 0
- .CMD SURFACEFORMAT rot=10 tilt=35 vScale=20 size=15,30
- .CMD SKETCHFORMAT mag=1.000000,1.000000 center=0.500000,0.500000 size=15,30 box=y
- .CMD PLOTFORMAT logs=0,0 subdivs=1,1 size=5,15 type=l
- .CMD FORMAT rd=d ct=10 im=i et=3 zt=15 pr=3 mass length time charge
- .CMD SET ORIGIN 0
- .CMD SET TOL 0.001000
- .CMD MARGIN 0
- .CMD LINELENGTH 78
- .CMD SET PRNCOLWIDTH 8
- .CMD SET PRNPRECISION 4
- .TXT 1 2 2 48
- a2,47,45,88
- Conformal Mapping by a Linear Transformation:
- First, define a "box" in the z-plane:
- .EQN 3 3 2 9
- z[0:0
- .EQN 0 11 2 10
- z[1:.4
- .EQN 0 13 2 16
- z[2:.4+.4i
- .EQN 0 16 2 11
- z[3:.4i
- .EQN 0 12 2 9
- z[4:0
- .EQN 3 -53 1 12
- j:0;4
- .EQN 0 26 8 24
- 1&-1&Im(z[j){1,1,6,15,l}@1&-1&Re(z[j)
- .TXT 1 26 3 12
- a3,12,10,31
- Plot the
- box in the
- z-plane.
- .TXT 1 -56 1 28
- a1,28,26,27
- Define the transformation:
- .EQN 2 4 4 11
- α:e^.7i/.8
- .EQN 2 13 1 9
- ß:.5
- .EQN 3 -13 2 16
- w[j:α*z[j+ß
- .EQN 0 26 8 24
- 1&-1&Im(w[j){1,1,6,15,l}@1&-1&Re(w[j)
- .TXT 1 26 4 15
- a4,15,13,45
- Plot the
- image of the
- box in the
- w-plane.
-