home *** CD-ROM | disk | FTP | other *** search
- .MCD 20000 0
- .CMD PLOTFORMAT logs=0,0 subdivs=1,1 size=5,15 type=l
- .CMD FORMAT rd=d ct=10 im=i et=3 zt=15 pr=3 mass length time charge
- .CMD SET ORIGIN 0
- .CMD SET TOL 0.001000
- .CMD MARGIN 0
- .CMD LINELENGTH 78
- .CMD SET PRNCOLWIDTH 8
- .CMD SET PRNPRECISION 4
- .TXT 0 42 1 39
- a1,38,42,37
- Copyright (c) 1988 by MathSoft, Inc.
- .TXT 1 -42 1 39
- a1,38,78,37
- COMPLEX EIGENVALUES AND EIGENVECTORS
- .TXT 0 81 1 13
- a1,12,78,11
- /equations
- .TXT 2 -81 2 77
- a2,76,78,132
- This document finds eigenvalues and associated eigenvectors for a general
- matrix. Enter the matrix and a guess for an eigenvalue.
- .TXT 1 81 1 14
- a1,13,78,12
- iterations:
- .EQN 0 17 1 8
- n~10
- .EQN 0 13 1 11
- j~1;n
- .EQN 0 16 1 15
- f(x)~rnd(1)
- .EQN 2 -127 4 22
- M~({4,4}÷-3÷4÷0÷0÷-2÷-5÷1÷0÷-1÷0÷-2÷1÷-1÷0÷0÷-1)
- .TXT 0 39 1 15
- a1,14,78,13
- guess for ▐:
- .EQN 2 0 1 13
- g~-4+2i
- .EQN 0 93 3 16
- v{52}~f(M{52}){49}
- .EQN 1 -50 2 33
- A~(M-g*identity(rows(M)))^-1
- .TXT 3 -82 1 14
- a1,13,78,12
- eigenvalue:
- .TXT 0 39 1 15
- a1,14,42,13
- eigenvector:
- .EQN 1 43 5 21
- v{52}j~A*(v{52}(j-1)/|v{52}(j-1))
- .EQN 0 29 5 12
- V~v{52}n/|v{52}n
- .EQN 1 -111 1 24
- ▐={18996}?
- .EQN 0 39 4 27
- V={18996}?
- .EQN 0 93 3 17
- ▐~((V]){51}*M*V)[0
- .TXT 6 -132 1 73
- a1,72,78,71
- The value of the characteristic polynomial of M at ▐ provides a check:
- .EQN 0 82 1 37
- check~|(M-▐*identity(rows(M)))
- .EQN 2 -82 2 37
- check=?
-