home *** CD-ROM | disk | FTP | other *** search
- #
- # Trigonometric functions, mostly inherited from Math::Complex.
- # -- Jarkko Hietaniemi, since April 1997
- # -- Raphael Manfredi, September 1996 (indirectly: because of Math::Complex)
- #
-
- require Exporter;
- package Math::Trig;
-
- use 5.006;
- use strict;
-
- use Math::Complex 1.35;
- use Math::Complex qw(:trig);
-
- our($VERSION, $PACKAGE, @ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS);
-
- @ISA = qw(Exporter);
-
- $VERSION = 1.03;
-
- my @angcnv = qw(rad2deg rad2grad
- deg2rad deg2grad
- grad2rad grad2deg);
-
- @EXPORT = (@{$Math::Complex::EXPORT_TAGS{'trig'}},
- @angcnv);
-
- my @rdlcnv = qw(cartesian_to_cylindrical
- cartesian_to_spherical
- cylindrical_to_cartesian
- cylindrical_to_spherical
- spherical_to_cartesian
- spherical_to_cylindrical);
-
- my @greatcircle = qw(
- great_circle_distance
- great_circle_direction
- great_circle_bearing
- great_circle_waypoint
- great_circle_midpoint
- great_circle_destination
- );
-
- my @pi = qw(pi2 pip2 pip4);
-
- @EXPORT_OK = (@rdlcnv, @greatcircle, @pi);
-
- # See e.g. the following pages:
- # http://www.movable-type.co.uk/scripts/LatLong.html
- # http://williams.best.vwh.net/avform.htm
-
- %EXPORT_TAGS = ('radial' => [ @rdlcnv ],
- 'great_circle' => [ @greatcircle ],
- 'pi' => [ @pi ]);
-
- sub pi2 () { 2 * pi }
- sub pip2 () { pi / 2 }
- sub pip4 () { pi / 4 }
-
- sub DR () { pi2/360 }
- sub RD () { 360/pi2 }
- sub DG () { 400/360 }
- sub GD () { 360/400 }
- sub RG () { 400/pi2 }
- sub GR () { pi2/400 }
-
- #
- # Truncating remainder.
- #
-
- sub remt ($$) {
- # Oh yes, POSIX::fmod() would be faster. Possibly. If it is available.
- $_[0] - $_[1] * int($_[0] / $_[1]);
- }
-
- #
- # Angle conversions.
- #
-
- sub rad2rad($) { remt($_[0], pi2) }
-
- sub deg2deg($) { remt($_[0], 360) }
-
- sub grad2grad($) { remt($_[0], 400) }
-
- sub rad2deg ($;$) { my $d = RD * $_[0]; $_[1] ? $d : deg2deg($d) }
-
- sub deg2rad ($;$) { my $d = DR * $_[0]; $_[1] ? $d : rad2rad($d) }
-
- sub grad2deg ($;$) { my $d = GD * $_[0]; $_[1] ? $d : deg2deg($d) }
-
- sub deg2grad ($;$) { my $d = DG * $_[0]; $_[1] ? $d : grad2grad($d) }
-
- sub rad2grad ($;$) { my $d = RG * $_[0]; $_[1] ? $d : grad2grad($d) }
-
- sub grad2rad ($;$) { my $d = GR * $_[0]; $_[1] ? $d : rad2rad($d) }
-
- sub cartesian_to_spherical {
- my ( $x, $y, $z ) = @_;
-
- my $rho = sqrt( $x * $x + $y * $y + $z * $z );
-
- return ( $rho,
- atan2( $y, $x ),
- $rho ? acos( $z / $rho ) : 0 );
- }
-
- sub spherical_to_cartesian {
- my ( $rho, $theta, $phi ) = @_;
-
- return ( $rho * cos( $theta ) * sin( $phi ),
- $rho * sin( $theta ) * sin( $phi ),
- $rho * cos( $phi ) );
- }
-
- sub spherical_to_cylindrical {
- my ( $x, $y, $z ) = spherical_to_cartesian( @_ );
-
- return ( sqrt( $x * $x + $y * $y ), $_[1], $z );
- }
-
- sub cartesian_to_cylindrical {
- my ( $x, $y, $z ) = @_;
-
- return ( sqrt( $x * $x + $y * $y ), atan2( $y, $x ), $z );
- }
-
- sub cylindrical_to_cartesian {
- my ( $rho, $theta, $z ) = @_;
-
- return ( $rho * cos( $theta ), $rho * sin( $theta ), $z );
- }
-
- sub cylindrical_to_spherical {
- return ( cartesian_to_spherical( cylindrical_to_cartesian( @_ ) ) );
- }
-
- sub great_circle_distance {
- my ( $theta0, $phi0, $theta1, $phi1, $rho ) = @_;
-
- $rho = 1 unless defined $rho; # Default to the unit sphere.
-
- my $lat0 = pip2 - $phi0;
- my $lat1 = pip2 - $phi1;
-
- return $rho *
- acos(cos( $lat0 ) * cos( $lat1 ) * cos( $theta0 - $theta1 ) +
- sin( $lat0 ) * sin( $lat1 ) );
- }
-
- sub great_circle_direction {
- my ( $theta0, $phi0, $theta1, $phi1 ) = @_;
-
- my $distance = &great_circle_distance;
-
- my $lat0 = pip2 - $phi0;
- my $lat1 = pip2 - $phi1;
-
- my $direction =
- acos((sin($lat1) - sin($lat0) * cos($distance)) /
- (cos($lat0) * sin($distance)));
-
- $direction = pi2 - $direction
- if sin($theta1 - $theta0) < 0;
-
- return rad2rad($direction);
- }
-
- *great_circle_bearing = \&great_circle_direction;
-
- sub great_circle_waypoint {
- my ( $theta0, $phi0, $theta1, $phi1, $point ) = @_;
-
- $point = 0.5 unless defined $point;
-
- my $d = great_circle_distance( $theta0, $phi0, $theta1, $phi1 );
-
- return undef if $d == pi;
-
- my $sd = sin($d);
-
- return ($theta0, $phi0) if $sd == 0;
-
- my $A = sin((1 - $point) * $d) / $sd;
- my $B = sin( $point * $d) / $sd;
-
- my $lat0 = pip2 - $phi0;
- my $lat1 = pip2 - $phi1;
-
- my $x = $A * cos($lat0) * cos($theta0) + $B * cos($lat1) * cos($theta1);
- my $y = $A * cos($lat0) * sin($theta0) + $B * cos($lat1) * sin($theta1);
- my $z = $A * sin($lat0) + $B * sin($lat1);
-
- my $theta = atan2($y, $x);
- my $phi = atan2($z, sqrt($x*$x + $y*$y));
-
- return ($theta, $phi);
- }
-
- sub great_circle_midpoint {
- great_circle_waypoint(@_[0..3], 0.5);
- }
-
- sub great_circle_destination {
- my ( $theta0, $phi0, $dir0, $dst ) = @_;
-
- my $lat0 = pip2 - $phi0;
-
- my $phi1 = asin(sin($lat0)*cos($dst)+cos($lat0)*sin($dst)*cos($dir0));
- my $theta1 = $theta0 + atan2(sin($dir0)*sin($dst)*cos($lat0),
- cos($dst)-sin($lat0)*sin($phi1));
-
- my $dir1 = great_circle_bearing($theta1, $phi1, $theta0, $phi0) + pi;
-
- $dir1 -= pi2 if $dir1 > pi2;
-
- return ($theta1, $phi1, $dir1);
- }
-
- 1;
-
- __END__
- =pod
-
- =head1 NAME
-
- Math::Trig - trigonometric functions
-
- =head1 SYNOPSIS
-
- use Math::Trig;
-
- $x = tan(0.9);
- $y = acos(3.7);
- $z = asin(2.4);
-
- $halfpi = pi/2;
-
- $rad = deg2rad(120);
-
- # Import constants pi2, pip2, pip4 (2*pi, pi/2, pi/4).
- use Math::Trig ':pi';
-
- # Import the conversions between cartesian/spherical/cylindrical.
- use Math::Trig ':radial';
-
- # Import the great circle formulas.
- use Math::Trig ':great_circle';
-
- =head1 DESCRIPTION
-
- C<Math::Trig> defines many trigonometric functions not defined by the
- core Perl which defines only the C<sin()> and C<cos()>. The constant
- B<pi> is also defined as are a few convenience functions for angle
- conversions, and I<great circle formulas> for spherical movement.
-
- =head1 TRIGONOMETRIC FUNCTIONS
-
- The tangent
-
- =over 4
-
- =item B<tan>
-
- =back
-
- The cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cot
- are aliases)
-
- B<csc>, B<cosec>, B<sec>, B<sec>, B<cot>, B<cotan>
-
- The arcus (also known as the inverse) functions of the sine, cosine,
- and tangent
-
- B<asin>, B<acos>, B<atan>
-
- The principal value of the arc tangent of y/x
-
- B<atan2>(y, x)
-
- The arcus cofunctions of the sine, cosine, and tangent (acosec/acsc
- and acotan/acot are aliases)
-
- B<acsc>, B<acosec>, B<asec>, B<acot>, B<acotan>
-
- The hyperbolic sine, cosine, and tangent
-
- B<sinh>, B<cosh>, B<tanh>
-
- The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/csch
- and cotanh/coth are aliases)
-
- B<csch>, B<cosech>, B<sech>, B<coth>, B<cotanh>
-
- The arcus (also known as the inverse) functions of the hyperbolic
- sine, cosine, and tangent
-
- B<asinh>, B<acosh>, B<atanh>
-
- The arcus cofunctions of the hyperbolic sine, cosine, and tangent
- (acsch/acosech and acoth/acotanh are aliases)
-
- B<acsch>, B<acosech>, B<asech>, B<acoth>, B<acotanh>
-
- The trigonometric constant B<pi> is also defined.
-
- $pi2 = 2 * B<pi>;
-
- =head2 ERRORS DUE TO DIVISION BY ZERO
-
- The following functions
-
- acoth
- acsc
- acsch
- asec
- asech
- atanh
- cot
- coth
- csc
- csch
- sec
- sech
- tan
- tanh
-
- cannot be computed for all arguments because that would mean dividing
- by zero or taking logarithm of zero. These situations cause fatal
- runtime errors looking like this
-
- cot(0): Division by zero.
- (Because in the definition of cot(0), the divisor sin(0) is 0)
- Died at ...
-
- or
-
- atanh(-1): Logarithm of zero.
- Died at...
-
- For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
- C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the
- C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the
- C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the
- C<tan>, C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k *
- pi>, where I<k> is any integer. atan2(0, 0) is undefined.
-
- =head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS
-
- Please note that some of the trigonometric functions can break out
- from the B<real axis> into the B<complex plane>. For example
- C<asin(2)> has no definition for plain real numbers but it has
- definition for complex numbers.
-
- In Perl terms this means that supplying the usual Perl numbers (also
- known as scalars, please see L<perldata>) as input for the
- trigonometric functions might produce as output results that no more
- are simple real numbers: instead they are complex numbers.
-
- The C<Math::Trig> handles this by using the C<Math::Complex> package
- which knows how to handle complex numbers, please see L<Math::Complex>
- for more information. In practice you need not to worry about getting
- complex numbers as results because the C<Math::Complex> takes care of
- details like for example how to display complex numbers. For example:
-
- print asin(2), "\n";
-
- should produce something like this (take or leave few last decimals):
-
- 1.5707963267949-1.31695789692482i
-
- That is, a complex number with the real part of approximately C<1.571>
- and the imaginary part of approximately C<-1.317>.
-
- =head1 PLANE ANGLE CONVERSIONS
-
- (Plane, 2-dimensional) angles may be converted with the following functions.
-
- $radians = deg2rad($degrees);
- $radians = grad2rad($gradians);
-
- $degrees = rad2deg($radians);
- $degrees = grad2deg($gradians);
-
- $gradians = deg2grad($degrees);
- $gradians = rad2grad($radians);
-
- The full circle is 2 I<pi> radians or I<360> degrees or I<400> gradians.
- The result is by default wrapped to be inside the [0, {2pi,360,400}[ circle.
- If you don't want this, supply a true second argument:
-
- $zillions_of_radians = deg2rad($zillions_of_degrees, 1);
- $negative_degrees = rad2deg($negative_radians, 1);
-
- You can also do the wrapping explicitly by rad2rad(), deg2deg(), and
- grad2grad().
-
- =head1 RADIAL COORDINATE CONVERSIONS
-
- B<Radial coordinate systems> are the B<spherical> and the B<cylindrical>
- systems, explained shortly in more detail.
-
- You can import radial coordinate conversion functions by using the
- C<:radial> tag:
-
- use Math::Trig ':radial';
-
- ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
- ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
- ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
- ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
- ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
- ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
-
- B<All angles are in radians>.
-
- =head2 COORDINATE SYSTEMS
-
- B<Cartesian> coordinates are the usual rectangular I<(x, y, z)>-coordinates.
-
- Spherical coordinates, I<(rho, theta, pi)>, are three-dimensional
- coordinates which define a point in three-dimensional space. They are
- based on a sphere surface. The radius of the sphere is B<rho>, also
- known as the I<radial> coordinate. The angle in the I<xy>-plane
- (around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
- coordinate. The angle from the I<z>-axis is B<phi>, also known as the
- I<polar> coordinate. The North Pole is therefore I<0, 0, rho>, and
- the Gulf of Guinea (think of the missing big chunk of Africa) I<0,
- pi/2, rho>. In geographical terms I<phi> is latitude (northward
- positive, southward negative) and I<theta> is longitude (eastward
- positive, westward negative).
-
- B<BEWARE>: some texts define I<theta> and I<phi> the other way round,
- some texts define the I<phi> to start from the horizontal plane, some
- texts use I<r> in place of I<rho>.
-
- Cylindrical coordinates, I<(rho, theta, z)>, are three-dimensional
- coordinates which define a point in three-dimensional space. They are
- based on a cylinder surface. The radius of the cylinder is B<rho>,
- also known as the I<radial> coordinate. The angle in the I<xy>-plane
- (around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
- coordinate. The third coordinate is the I<z>, pointing up from the
- B<theta>-plane.
-
- =head2 3-D ANGLE CONVERSIONS
-
- Conversions to and from spherical and cylindrical coordinates are
- available. Please notice that the conversions are not necessarily
- reversible because of the equalities like I<pi> angles being equal to
- I<-pi> angles.
-
- =over 4
-
- =item cartesian_to_cylindrical
-
- ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
-
- =item cartesian_to_spherical
-
- ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
-
- =item cylindrical_to_cartesian
-
- ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
-
- =item cylindrical_to_spherical
-
- ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
-
- Notice that when C<$z> is not 0 C<$rho_s> is not equal to C<$rho_c>.
-
- =item spherical_to_cartesian
-
- ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
-
- =item spherical_to_cylindrical
-
- ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
-
- Notice that when C<$z> is not 0 C<$rho_c> is not equal to C<$rho_s>.
-
- =back
-
- =head1 GREAT CIRCLE DISTANCES AND DIRECTIONS
-
- You can compute spherical distances, called B<great circle distances>,
- by importing the great_circle_distance() function:
-
- use Math::Trig 'great_circle_distance';
-
- $distance = great_circle_distance($theta0, $phi0, $theta1, $phi1, [, $rho]);
-
- The I<great circle distance> is the shortest distance between two
- points on a sphere. The distance is in C<$rho> units. The C<$rho> is
- optional, it defaults to 1 (the unit sphere), therefore the distance
- defaults to radians.
-
- If you think geographically the I<theta> are longitudes: zero at the
- Greenwhich meridian, eastward positive, westward negative--and the
- I<phi> are latitudes: zero at the North Pole, northward positive,
- southward negative. B<NOTE>: this formula thinks in mathematics, not
- geographically: the I<phi> zero is at the North Pole, not at the
- Equator on the west coast of Africa (Bay of Guinea). You need to
- subtract your geographical coordinates from I<pi/2> (also known as 90
- degrees).
-
- $distance = great_circle_distance($lon0, pi/2 - $lat0,
- $lon1, pi/2 - $lat1, $rho);
-
- The direction you must follow the great circle (also known as I<bearing>)
- can be computed by the great_circle_direction() function:
-
- use Math::Trig 'great_circle_direction';
-
- $direction = great_circle_direction($theta0, $phi0, $theta1, $phi1);
-
- (Alias 'great_circle_bearing' is also available.)
- The result is in radians, zero indicating straight north, pi or -pi
- straight south, pi/2 straight west, and -pi/2 straight east.
-
- You can inversely compute the destination if you know the
- starting point, direction, and distance:
-
- use Math::Trig 'great_circle_destination';
-
- # thetad and phid are the destination coordinates,
- # dird is the final direction at the destination.
-
- ($thetad, $phid, $dird) =
- great_circle_destination($theta, $phi, $direction, $distance);
-
- or the midpoint if you know the end points:
-
- use Math::Trig 'great_circle_midpoint';
-
- ($thetam, $phim) =
- great_circle_midpoint($theta0, $phi0, $theta1, $phi1);
-
- The great_circle_midpoint() is just a special case of
-
- use Math::Trig 'great_circle_waypoint';
-
- ($thetai, $phii) =
- great_circle_waypoint($theta0, $phi0, $theta1, $phi1, $way);
-
- Where the $way is a value from zero ($theta0, $phi0) to one ($theta1,
- $phi1). Note that antipodal points (where their distance is I<pi>
- radians) do not have waypoints between them (they would have an an
- "equator" between them), and therefore C<undef> is returned for
- antipodal points. If the points are the same and the distance
- therefore zero and all waypoints therefore identical, the first point
- (either point) is returned.
-
- The thetas, phis, direction, and distance in the above are all in radians.
-
- You can import all the great circle formulas by
-
- use Math::Trig ':great_circle';
-
- Notice that the resulting directions might be somewhat surprising if
- you are looking at a flat worldmap: in such map projections the great
- circles quite often do not look like the shortest routes-- but for
- example the shortest possible routes from Europe or North America to
- Asia do often cross the polar regions.
-
- =head1 EXAMPLES
-
- To calculate the distance between London (51.3N 0.5W) and Tokyo
- (35.7N 139.8E) in kilometers:
-
- use Math::Trig qw(great_circle_distance deg2rad);
-
- # Notice the 90 - latitude: phi zero is at the North Pole.
- sub NESW { deg2rad($_[0]), deg2rad(90 - $_[1]) }
- my @L = NESW( -0.5, 51.3);
- my @T = NESW(139.8, 35.7);
- my $km = great_circle_distance(@L, @T, 6378); # About 9600 km.
-
- The direction you would have to go from London to Tokyo (in radians,
- straight north being zero, straight east being pi/2).
-
- use Math::Trig qw(great_circle_direction);
-
- my $rad = great_circle_direction(@L, @T); # About 0.547 or 0.174 pi.
-
- The midpoint between London and Tokyo being
-
- use Math::Trig qw(great_circle_midpoint);
-
- my @M = great_circle_midpoint(@L, @T);
-
- or about 68.11N 24.74E, in the Finnish Lapland.
-
- =head2 CAVEAT FOR GREAT CIRCLE FORMULAS
-
- The answers may be off by few percentages because of the irregular
- (slightly aspherical) form of the Earth. The errors are at worst
- about 0.55%, but generally below 0.3%.
-
- =head1 BUGS
-
- Saying C<use Math::Trig;> exports many mathematical routines in the
- caller environment and even overrides some (C<sin>, C<cos>). This is
- construed as a feature by the Authors, actually... ;-)
-
- The code is not optimized for speed, especially because we use
- C<Math::Complex> and thus go quite near complex numbers while doing
- the computations even when the arguments are not. This, however,
- cannot be completely avoided if we want things like C<asin(2)> to give
- an answer instead of giving a fatal runtime error.
-
- Do not attempt navigation using these formulas.
-
- =head1 AUTHORS
-
- Jarkko Hietaniemi <F<jhi@iki.fi>> and
- Raphael Manfredi <F<Raphael_Manfredi@pobox.com>>.
-
- =cut
-
- # eof
-