home *** CD-ROM | disk | FTP | other *** search
Text File | 1991-12-12 | 58.2 KB | 2,864 lines |
- .rs
- .\" Troff code generated by TPS Convert from ITU Original Files
- .\" Not Copyright ( c) 1991
- .\"
- .\" Assumes tbl, eqn, MS macros, and lots of luck.
- .TA 1c 2c 3c 4c 5c 6c 7c 8c
- .ds CH
- .ds CF
- .EQ
- delim @@
- .EN
- .nr LL 40.5P
- .nr ll 40.5P
- .nr HM 3P
- .nr FM 6P
- .nr PO 4P
- .nr PD 9p
- .po 4P
-
- .rs
- \v | 5i'
- .sp 2P
- .LP
- \fBRecommendation\ G.722\fR
- .RT
- .sp 2P
- .sp 1P
- .ce 1000
- \fB7\ kHz\ AUDIO\(hyCODING\ WITHIN\ 64\ KBIT/S\fR
- .EF '% Fascicle\ III.4\ \(em\ Rec.\ G.722''
- .OF '''Fascicle\ III.4\ \(em\ Rec.\ G.722 %'
- .ce 0
- .sp 1P
- .ce 1000
- \fI(Melbourne, 1988)\fR
- .sp 9p
- .RT
- .ce 0
- .sp 1P
- .LP
- \fB1\fR \fBGeneral\fR
- .sp 1P
- .RT
- .sp 1P
- .LP
- 1.1
- \fIScope and outline description\fR
- .sp 9p
- .RT
- .PP
- This Recommendation describes the characteristics of an audio (50 to 7
- 000\ Hz) coding system which may be used for a variety of higher quality
- speech applications. The coding system uses
- sub\(hyband adaptive differential pulse code modulation
- (SB\(hyADPCM) within a bit rate of 64 kbitB/Fs. The
- system is henceforth referred to as 64 kbit/s (7\ kHz) audio coding. In the
- SB\(hyADPCM technique used, the frequency band is split into two sub\(hybands
- (higher and lower) and the signals in each sub\(hyband are encoded using
- ADPCM.
- .PP
- The system has three basic modes of operation corresponding to the bit rates
- used for 7\ kHz
- audio coding
- :\ 64, 56 and 48\ kbit/s. The latter two modes allow an
- auxiliary data channel
- of\ 8 and 16\ kbit/s respectively to be provided within the 64\ kbit/s
- by making use of bits from the lower sub\(hyband.
- .PP
- Figure 1/G.722 identifies the main functional parts of the 64 kbit/s (7\
- kHz)
- audio codec
- as follows:
- .RT
- .LP
- i)
- 64 kbit/s (7 kHz) audio encoder comprising:
- .LP
- \(em
- a transmit audio part which converts an audio signal to
- \fR
- a uniform digital signal which is coded using 14\ bits with
- \fR
- 16\ kHz sampling;
- .LP
- \(em
- a SB\(hyADPCM encoder
- which reduces the bit rate
- to 64\ kbit/s.
- .LP
- ii)
- 64 kbitB/Fs (7 kHz) audio decoder comprising:
- .LP
- \(em
- a
- SB\(hyADPCM decoder
- which performs the reverse
- operation to the encoder, noting that the effective audio
- coding bit rate at the input of the decoder can be\ 64, 56
- or 48\ kbit/s depending on the mode of operation;
- .LP
- \fR
- \(em
- a receive audio part which reconstructs the audio
- signal from the uniform digital signal which is encoded
- using 14\ bits with 16\ kHz sampling.
- .PP
- The following two parts, identified in Figure 1/G.722 for
- clarification, will be needed for applications requiring an auxiliary data
- channel within the 64\ kbit/s:
- .LP
- \(em
- a data insertion device at the transmit end which makes
- use of, when needed, 1\ or 2\ audio bits per octet depending on
- the mode of operation and substitutes data bits to provide an
- auxiliary data channel of 8\ or 16\ kbit/s respectively;
- .LP
- \fR
- \(em
- a data extraction device at the receive end which
- determines the mode of operation according to a mode control
- strategy and extracts the data bits as appropriate.
- .PP
- Paragraph 1.2 contains a functional description of the transmit and receive
- audio parts, \(sc 1.3 describes the modes of operation and the implication
- of inserting data bits on the algorithms, whilst \(sc\(sc\ 1.4 and\ 1.5
- provide the
- functional descriptions of the SB\(hyADPCM encoding and decoding algorithms
- respectively. Paragraph\ 1.6 deals with the timing requirements. Paragraph\ 2
- specifies the
- transmission characteristics of the 64\ kbit/s (7\ kHz) audio codec and of the
- transmit and receive audio parts, \(sc\(sc\ 3 and\ 4 give the principles of the
- SB\(hyADPCM encoder respectively whilst \(sc\(sc\ 5 and\ 6 specify the
- computational
- details of the
- Quadrature Mirror Filters
- (QMF) and of the ADPCM
- encoders and decoders respectively.
- .PP
- Networking aspects and test sequences are addressed in Appendices\ I
- and\ II respectively to this Recommendation.
- .PP
- Recommendation\ G.725 contains specifications for in\(hychannel
- handshaking procedures for terminal identification and for mode control
- strategy, including interworking with existing 64\ kbit/s PCM
- terminals.
- .bp
- .RT
- .LP
- .rs
- .sp 31P
- .ad r
- \fBFigure 1/G.722, p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .sp 1P
- .LP
- 1.2
- \fIFunctional description of the audio parts\fR
- .sp 9p
- .RT
- .PP
- Figure 2/G.722 shows a possible arrangement of audio parts in a
- 64\ kbit/s (7\ kHz)
- audio coding terminal
- . The microphone, pre\(hyamplifier, power amplifier and loudspeaker are
- shown simply to identify the audio parts
- and are not considered further in this Recommendation.
- .PP
- In order to facilitate the measurement of the transmission
- characteristics as specified in \(sc\ 2, test points\ A and\ B need to
- be provided as shown. These test points may either be for test purposes
- only or, where the
- audio parts are located in different units from the microphone, loudspeaker,
- etc., correspond to physical interfaces.
- .PP
- The transmit and receive audio parts comprise either the following
- functional units or any equivalent items satisfying the specifications
- of \(sc\ 2:
- .RT
- .LP
- i)
- transmit:
- .LP
- \(em
- an input level adjustment device,
- .LP
- \(em
- an input
- anti\(hyaliasing filter
- ,
- .LP
- \fR
- \(em
- a sampling device operating at 16 kHz,
- .LP
- \(em
- an
- analogue\(hyto\(hyuniform digital converter
- with
- 14\ bits and with 16\ kHz sampling;
- .LP
- ii)
- receive:
- .LP
- \(em
- a
- uniform digital\(hyto\(hyanalogue converter
- with
- 14\ bits and with 16\ kHz sampling,
- .LP
- \(em
- a
- reconstructing filter
- which includes x/sin
- x\ correction,
- .LP
- \(em
- an output level adjustment device.
- .bp
- .LP
- .rs
- .sp 20P
- .ad r
- \fBFigure 2/G.722, p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .sp 1P
- .LP
- 1.3
- \fIPossible modes of operation and implications of inserting data\fR
- .sp 9p
- .RT
- .PP
- \fR The three basic possible modes of operation which correspond to the
- bit rates available for audio coding at the input of the decoder are defined
- in Table\ 1/G.722.
- .RT
- .ce
- \fBH.T. [T1.722]\fR
- .ce
- TABLE\ 1/G.722
- .ce
- \fBBasic possible modes of operation\fR
- .ps 9
- .vs 11
- .nr VS 11
- .nr PS 9
- .TS
- center box;
- cw(36p) | cw(72p) | cw(72p) .
- Mode 7 kHz audio coding bit rate {
- Auxiliary data channel bit rate
- }
- _
- .T&
- cw(36p) | cw(72p) | cw(72p) .
- 1 64 kbit/s \ 0 kbit/s
- .T&
- cw(36p) | cw(72p) | cw(72p) .
- 2 56 kbit/s \ 8 kbit/s
- .T&
- cw(36p) | cw(72p) | cw(72p) .
- 3 48 kbit/s 16 kbit/s
- _
- .TE
- .nr PS 9
- .RT
- .ad r
- \fBTable 1/G.722 [T1.722], p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .PP
- .sp 3
- See Appendix I for examples of applications using one or several of these
- modes and for their corresponding subjective quality.
- .bp
- .PP
- The 64 kbit/s (7 kHz) audio encoder uses 64 kbit/s for audio coding
- at all times irrespective of the mode of operation. The audio coding algorithm
- has been chosen such that, without sending any indication to the encoder,
- the least significant bit or two least significant bits of the lower sub\(hyband
- may
- .PP
- be used downstream from the 64\ kbit/s (7\ kHz) audio encoder in order to
- substitute the auxiliary data channel bits. However, to maximize the audio
- performance for a given mode of operation, the 64\ kbit/s (7\ kHz) audio
- decoder must be optimized to the bit rate available for audio coding. Thus,
- this
- Recommendation describes three variants of the SB\(hyADPCM decoder and, for
- applications requiring an auxiliary data channel, an indication must be
- forwarded to select in the decoder the variant appropriate to the mode of
- operation. Figure\ 1/G.722 illustrates the arrangement. It should be noted
- that the bit rate at the input of the 64\ kbit/s (7\ kHz) audio decoder
- is always
- 64\ kbit/s but comprising\ 64, 56 or 48\ kbit/s for audio coding depending
- on the mode of operation. From an algorithm viewpoint, the variant used
- in the
- SB\(hyADPCM decoder can be changed in any octet during the transmission.
- When no indication about the mode of operation is forwarded to the decoder,
- the variant corresponding to Mode\ 1 should be used.
- .PP
- A mode mismatch situation, where the variant used in the 64\ kbit/s
- (7\ kHz) audio decoder for a given octet does not correspond to the mode of
- operation, will not cause misoperation of the decoder. However, to maximize
- the audio performance, it is recommended that the mode control strategy
- adopted in
- .PP
- the data extraction device should be such as to minimize the duration of the
- mode mismatch. Appendix\ I gives further information on the effects of a mode
- mismatch. To ensure compatibility between various types of 64\ kbit/s (7\ kHz)
- audio coding terminals, it is recommended that, as a minimum, the variant
- corresponding to Mode\ 1 operation is always implemented in the decoder.
- .PP
- \fR
- The mode control strategy could be derived from the auxiliary data
- channel protocol (see Recommendation\ G.725).
- .RT
- .sp 1P
- .LP
- 1.4
- \fIFunctional description of the\fR
- \fISB\(hyADPCM encoder\fR
- .sp 9p
- .RT
- .PP
- \fR
- Figure 3/G.722 is a block diagram of the SB\(hyADPCM encoder. A
- functional description of each block is given below in \(sc\(sc\ 1.4.1
- to\ 1.4.4.
- .RT
- .LP
- .rs
- .sp 13P
- .ad r
- \fBFigure 3/G.722, p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .sp 1P
- .LP
- 1.4.1
- \fITransmit quadrature mirror filters\fR (QMFs)
- .sp 9p
- .RT
- .PP
- The transmit QMFs comprise two linear\(hyphase non\(hyrecursive digital
- filters which split the frequency band 0\ to 8000\ Hz into two sub\(hybands:
- the
- lower sub\(hyband (0\ to 4000\ Hz) and the higher sub\(hyband (4000\ to
- 8000\ Hz). The
- .PP
- input to the transmit QMFs,\ \fIx\fR\d\fIi\fR\\d\fIn\fR\u, is the output
- from the transmit audio part and is sampled at 16\ kHz. The outputs,\ \fIx\fR\d\fIL\fR\uand\
- \fIx\fR\d\fIH\fR\u,
- for the lower and higher sub\(hybands respectively, are sampled at 8\ kHz.
- .RT
- .sp 1P
- .LP
- 1.4.2
- \fILower sub\(hyband ADPCM encoder\fR
- .sp 9p
- .RT
- .PP
- Figure 4/G.722 is a block diagram of the lower sub\(hyband ADPCM
- encoder. The lower sub\(hyband input signal,\ \fIx\fR\d\fIL\fR\uafter subtraction
- of an
- estimate,\ \fIs\fR\d\fIL\fR\u, of the input signal produces the difference
- signal,
- \fIe\fR\d\fIL\fR\u. An adaptive 60\(hylevel
- non linear quantizer
- is used to
- assign six binary digits to the value of the difference signal to produce a
- 48\ kbit/s signal,\ \fII\fR\d\fIL\fR\u.
- .bp
- .PP
- In the feedback loop, the two least significant bits of \fII\fR\d\fIL\fR\uare
- deleted to produce a 4\(hybit signal\ \fII\fR\d\fIL\fR\\d\fIt\fR\u, which
- is used for the
- quantizer adaptation and applied to a 15\(hylevel inverse adaptive quantizer to
- produce a quantized difference signal,\ \fId\fR\d\fIL\fR\\d\fIt\fR\u. The
- signal estimate, \fIs\fR\d\fIL\fR\uis added to this quantized difference
- signal to produce a reconstructed version,\ \fIr\fR\d\fIL\fR\\d\fIt\fR\u,
- of the lower sub\(hyband input signal. Both the
- reconstructed signal and the quantized difference signal are operated upon
- by an adaptive predictor which produce the estimate,\ \fIs\fR\d\fIL\fR\u,
- of the input signal, thereby completing the feedback loop.
- .PP
- 4\(hybit operation, instead of 6\(hybit operation, in the feedback loops
- of both the lower sub\(hyband ADPCM encoder, and the lower sub\(hyband
- ADPCM decoder
- allows the possible insertion of data in the two least significant bits as
- described in \(sc\ 1.3 without causing misoperation in the decoder. Use of a
- 60\(hylevel quantizer (instead of 64\(hylevel) ensures that the pulse density
- requirements as described in Recommendation\ G.802 are met under all conditions
- and in all modes of operation.
- .RT
- .LP
- .rs
- .sp 29P
- .ad r
- \fBFigure 4/G.722, p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .sp 1P
- .LP
- 1.4.3
- \fIHigher sub\(hyband ADPCM encoder\fR
- .sp 9p
- .RT
- .PP
- Figure 5/G.722 is a block diagram of the higher sub\(hyband ADPCM
- encoder. The higher sub\(hyband input signal,\ \fIx\fR\d\fIH\fR\uafter
- subtraction of an
- estimate,\ \fIs\fR\d\fIH\fR\u, of the input signal, produces the difference
- signal, \fIe\fR\d\fIH\fR\u. An adaptive 4\(hylevel non linear quantizer
- is used to assign two binary digits to the value of the difference signal
- to produce a 16\ kbit/s
- signal,\ \fII\fR\d\fIH\fR\u.
- .PP
- \fR An inverse adaptive quantizer produces a quantized difference
- signal,\ \fId\fR\d\fIH\fR\u, from these same two binary digits. The signal
- estimate, \fIs\fR\d\fIH\fR\u, is added to this quantized difference signal
- to produce a
- reconstructed version,\ \fIr\fR\d\fIH\fR\u, of the higher sub\(hyband input
- signal. Both the reconstructed signal and the quantized difference signal
- are operated upon by an adaptive predictor which produces the estimate,\
- \fIs\fR\d\fIH\fR\u, of the
- input signal, thereby completing the feedback loop.
- .bp
- .RT
- .LP
- .rs
- .sp 23P
- .ad r
- \fBFigure 5/G.722, p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .sp 1P
- .LP
- 1.4.4
- \fIMultiplexer\fR
- .sp 9p
- .RT
- .PP
- The multiplexer (MUX) shown in Figure 3/G.722 is used to combine the signals,\
- \fII\fR\d\fIL\fR\uand\ \fII\fR\d\fIH\fR\u, from the lower and higher sub\(hyband
- ADPCM encoders respectively into a composite 64\ kbit/s signal,\ I, with
- an octet format for transmission.
- .PP
- The output octet format, after multiplexing, is as
- follows:
- \v'6p'
- .RT
- .sp 1P
- .ce 1000
- \fII\fR\d\fIH\fR\\d1\u\fII\fR\d\fIH\fR\\d2\u\fII\fR\d\fIL\fR\\d1\u\fII\fR\d\fIL\fR\\d2\u\fI\fR
- \fII\fR\d\fIL\fR\\d3\u\fII\fR\d\fIL\fR\\d4\u\fII\fR\d\fIL\fR\\d5\u\fII\fR\d\fIL\fR\\d6\u
- .ce 0
- .sp 1P
- .LP
- .sp 1
- where \fII\fR\d\fIH\fR\\d1\uis the first bit transmitted, and
- where\ \fII\fR\d\fIH\fR\\d1\uand\ \fII\fR\d\fIL\fR\\d1\uare the most significant
- bits of \fII\fR\d\fIH\fR\uand\ \fII\fR\d\fIL\fR\urespectively, whilst\
- \fII\fR\d\fIH\fR\\d2\uand\ \fII\fR\d\fIL\fR\\d6\uare the least significant
- bits of\ \fII\fR\d\fIH\fR\uand\ \fII\fR\d\fIL\fR\u
- respectively.
- .sp 1P
- .LP
- 1.5
- \fIFunctional description of the\fR
- \fISB\(hyADPCM decoder\fR
- .sp 9p
- .RT
- .PP
- \fR
- Figure 6/G.722 is a block diagram of the SB\(hyADPCM decoder. A
- functional description of each block is given below in \(sc\(sc\ 1.5.1
- to\ 1.5.4.
- .RT
- .LP
- .rs
- .sp 13P
- .ad r
- \fBFigure 6/G.722, p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .LP
- .bp
- .sp 1P
- .LP
- 1.5.1
- \fIDemultiplexer\fR
- .sp 9p
- .RT
- .PP
- The demultiplexer (DMUX) decomposes the received 64 kbit/s
- octet\(hyformatted signal,\ \fII\fR\d\fIr\fR\u, into two signals,\ \fII\fR\d\fIL\fR\\d\fIr\fR\uand
- \fII\fR\d\fIH\fR\u, which form the codeword inputs to the lower and higher
- sub\(hyband ADPCM decoders respectively.
- .RT
- .sp 1P
- .LP
- 1.5.2
- \fILower sub\(hyband ADPCM decoder\fR
- .sp 9p
- .RT
- .PP
- Figure 7/G.722 is a block diagram of the lower sub\(hyband ADPCM
- decoder. This decoder can operate in any of three possible variants depending
- on the received indication of the mode of operation.
- .RT
- .LP
- .rs
- .sp 35P
- .ad r
- \fBFigure 7/G.722, p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .PP
- The path which produces the estimate, \fIs\fR\d\fIL\fR\u, of the input
- signal including the
- quantizer adaptation
- , is identical to the feedback portion of the lower sub\(hy band ADPCM
- encoder described in \(sc\ 1.4.2. The
- reconstructed signal,\ \fIr\fR\d\fIL\fR\u, is produced by adding to the signal
- estimate one of three possible quantized difference
- signals,\ \fId\fR\d\fIL\fR\\d,\\d6\u,\ \fId\fR\d\fIL\fR\\d,\\d5\uor\ \fId\fR\d\fIL\fR\\d,\\d4\u(=\
- \fId\fR\d\fIL\fR\\d\fIt\fR\u\(hy see note), selected according to the received
- indication of
- the mode of operation. For each indication, Table\ 2/G.722 shows the quantized
- difference signal selected, the inverse adaptive quantizer used and the
- number of least significant bits deleted from the input codeword.
- .bp
- .ce
- \fBH.T. [T2.722]\fR
- .ce
- TABLE\ 2/G.722
- .ce
- \fBLower sub\(hyband ADPCM decoder variants\fR
- .ps 9
- .vs 11
- .nr VS 11
- .nr PS 9
- .TS
- center box;
- cw(60p) | cw(54p) | cw(60p) | cw(54p) .
- {
- Received indication of mode of operation
- } {
- Quantized difference signal selected
- } {
- Inverse adaptive quantizer used
- } {
- Number of least significant bits deleted from input codeword,
- I
- L
- r
- }
- _
- .T&
- cw(60p) | cw(54p) | cw(60p) | cw(54p) .
- Mode 1 d L , 6 60\(hylevel 0
- .T&
- cw(60p) | cw(54p) | cw(60p) | cw(54p) .
- Mode 2 d L , 5 30\(hylevel 1
- .T&
- cw(60p) | cw(54p) | cw(60p) | cw(54p) .
- Mode 3 d L , 4 15\(hylevel 2
- .TE
- .LP
- \fINote\fR
- \ \(em\ For clarification purposes, all three inverse quantizers have been
- indicated in the upper portion of Figure\ 7/G.722. In an optimized
- implementation, the signal\ d
- L
- t, produced in the predictor loop, could be substituted for\ d
- L , 4.
- .nr PS 9
- .RT
- .ad r
- \fBTable 2/G.722 [T2.722], p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .sp 1P
- .LP
- .sp 2
- 1.5.3
- \fIHigher sub\(hyband ADPCM decoder\fR
- .sp 9p
- .RT
- .PP
- Figure 8/G.722 is a block diagram of the higher sub\(hyband ADPCM
- decoder. This decoder is identical to the feedback portion of the higher
- sub\(hyband ADPCM encoder described in \(sc\ 1.4.3, the output being the
- reconstructed signal,\ \fIr\fR\d\fIH\fR\u.
- .RT
- .LP
- .rs
- .sp 17P
- .ad r
- \fBFigure 8/G.722, p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .sp 1P
- .LP
- 1.5.4
- \fIReceive QMFs\fR
- .sp 9p
- .RT
- .PP
- The receive QMFs shown in Figure 6/G.722 are two
- linear\(hyphase non\(hyrecursive digital filters
- which interpolate the outputs,\ \fIr\fR\d\fIL\fR\uand
- \fIr\fR\d\fIH\fR\u, of the lower and higher sub\(hyband ADPCM decoders
- from 8\ kHz to
- 16\ kHz and which then produce an output,\ \fIx\fR\d\fIo\fR\\d\fIu\fR\\d\fIt\fR\u,
- sampled at
- 16\ kHz which forms the input to the receive audio parts.
- .PP
- \fR Excluding the ADPCM coding processes, the combination of the
- transmit and the receive QMFs has an impulse response which closely
- approximates a simple delay whilst, at the same time, the
- aliasing
- effects associated with the 8\ kHz
- sub\(hysampling
- are cancelled.
- .bp
- .RT
- .sp 1P
- .LP
- 1.6
- \fITiming requirements\fR
- .sp 9p
- .RT
- .PP
- 64 kHz bit timing and 8 kHz octet timing should be provided by the network
- to the audio decoder.
- .PP
- For a correct operation of the audio coding system, the precision of the
- 16\ kHz sampling frequencies of the A/D and D/A converters must be better
- than \(+- | 0 | (mu | 0\uD\dlF261\u6\d.
- .RT
- .sp 2P
- .LP
- \fB2\fR \fBTransmission characteristics\fR
- .sp 1P
- .RT
- .sp 1P
- .LP
- 2.1
- \fICharacteristics of the audio ports and the\fR
- \fItest points\fR
- .sp 9p
- .RT
- .PP
- \fR
- Figure 2/G.722 indicates the audio input and output ports and the test
- points (A and\ B). It is for the designer to determine the characteristics
- of the audio ports and the test points (i.e.\ relative levels, impedances,
- whether balanced or unbalanced). The microphone, pre\(hyamplifier, power
- amplifier and loudspeaker should be chosen with reference to the specifications
- of the
- audio parts: in particular their nominal bandwidth, idle noise and
- distortion.
- .PP
- It is suggested that input and ouput impedances
- should be high and low, respectively, for an unbalanced termination
- whilst for a balanced termination these impedances should be 600 ohms.
- However, the audio parts should meet all audio parts specifications for
- their respective input and output impedance conditions.
- .RT
- .sp 1P
- .LP
- 2.2
- \fIOverload point\fR
- .sp 9p
- .RT
- .PP
- The overload point for the analogue\(hyto\(hydigital and
- digital\(hyto\(hyanalogue converters should be + 9\ dBm0 \(+- | .3\ dB.
- This assumes
- the same nominal speech level (see Recommendation\ G.232) as for 64\ kbit/s
- PCM, but with a wider margin for the maximum signal level which is likely
- to be
- necessary with conference arrangements. The measurement method of the overload
- point is under study.
- .RT
- .sp 1P
- .LP
- 2.3
- \fINominal reference frequency\fR
- .sp 9p
- .RT
- .PP
- Where a nominal reference frequency of 1000\ Hz is indicated below, the
- actual frequency should be chosen equal to 1020\ Hz. The frequency
- tolerance should be +2 to \(em7\ Hz.
- .RT
- .sp 1P
- .LP
- 2.4
- \fITransmission characteristics of the 64 kbit/s (7 kHz) audio\fR
- \fIcodec\fR
- .sp 9p
- .RT
- .PP
- The values and limits specified below should be met with a
- 64\ kbit/s (7\ kHz) audio encoder and decoder connected back\(hyto\(hyback. For
- practical reasons, the measurements may be performed in a looped configuration
- as shown in Figure\ 9a)/G.722. However, such a looped configuration is
- only
- intended to simulate an actual situation where the encoder and decoder are
- located at the two ends of a connection.
- .PP
- These limits apply to operation in Mode 1.
- .RT
- .sp 1P
- .LP
- 2.4.1
- \fINominal bandwidth\fR
- .sp 9p
- .RT
- .PP
- The nominal 3 dB bandwidth is 50 to 7000 Hz.
- .RT
- .sp 1P
- .LP
- 2.4.2
- \fIAttenuation/frequency distortion\fR
- .sp 9p
- .RT
- .PP
- The variation with frequency of the attenuation should satisfy the limits
- shown in the mask of Figure\ 10/G.722. The nominal reference frequency
- is 1000\ Hz and the test level is \(em10\ dBm0.
- .RT
- .sp 1P
- .LP
- 2.4.3
- \fIAbsolute group delay\fR
- .sp 9p
- .RT
- .PP
- The absolute group delay, defined as the minimum group delay for a sine
- wave signal between\ 50 and 7000\ Hz, should not exceed 4\ ms. The test
- level is \(em10\ dBm0.
- .RT
- .sp 1P
- .LP
- 2.4.4
- \fIIdle noise\fR
- .sp 9p
- .RT
- .PP
- The unweighted noise power measured in the frequency range 50 to
- 7000\ Hz with no signal at the input port (test point\ A) should not exceed
- \(em66\ dBm0. When measured in the frequency range 50\ Hz to 20\ kHz the
- unweighted noise power should not exceed \(em60\ dBm0.
- .bp
- .RT
- .LP
- .rs
- .sp 47P
- .ad r
- \fBFigure 9/G.722, p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .LP
- .bp
- .LP
- .rs
- .sp 19P
- .ad r
- \fBFigure 10/G.722, p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .sp 1P
- .LP
- 2.4.5
- \fISingle frequency noise\fR
- .sp 9p
- .RT
- .PP
- The level of any single frequency (in particular 8000 Hz, the
- sampling frequency and its multiples), measured selectively with no signal
- at the input port (test point\ A) should not exceed \(em70\ dBm0.
- .RT
- .sp 1P
- .LP
- 2.4.6
- \fISignal\(hyto\(hytotal distortion ratio\fR
- .sp 9p
- .RT
- .PP
- Under study.
- .RT
- .sp 1P
- .LP
- 2.5
- \fITransmission characteristics of the audio parts\fR
- .sp 9p
- .RT
- .PP
- When the measurements indicated below for the audio parts are from audio\(hyto\(hyaudio,
- a looped configuration as shown in Figure\ 9b)/G.722 should be used. The
- audio parts should also meet the specifications of \(sc\ 2.4 with the
- measurement configuration of Figure\ 9b)/G.722.
- .RT
- .sp 1P
- .LP
- 2.5.1
- \fIAttenuationB/Ffrequency response of the input\fR
- \fIanti\(hyaliasing\fR \fIfilter\fR
- .sp 9p
- .RT
- .PP
- The in\(hyband and out\(hyof\(hyband attenuation/frequency response of
- the input anti\(hyaliasing filter should satisfy the limits of the mask
- shown in
- Figure\ 11/G.722. The nominal reference frequency is 1000\ Hz and the test
- level for the in\(hyband characteristic is \(em10\ dBm0. Appropriate measurements
- should be made to check the out\(hyof\(hyband characteristic taking into
- account the aliasing due to the 16\ kHz sampling.
- .RT
- .sp 1P
- .LP
- 2.5.2
- \fIAttenuationB/Ffrequency response of the output\fR
- \fIreconstructing\fR \fIfilter\fR
- .sp 9p
- .RT
- .PP
- The in\(hyband and out\(hyof\(hyband attenuation/frequency response of
- the output reconstructing filter should satisfy the limits of the mask
- shown in
- Figure\ 12/G.722. The nominal reference frequency is 1000\ Hz and the test
- level for the in\(hyband characteristic is \(em10\ dBm0. Appropriate measurements
- should be made to check the out\(hyof\(hyband characteristic taking into
- account the aliasing due to the 16\ kHz sampling. The mask of Figure\ 12/G.722
- is valid for the whole of the receive audio part including any pulse amplitude
- modulation distortion and x/sin x\ correction.
- .bp
- .RT
- .LP
- .rs
- .sp 20P
- .ad r
- \fBFigure 11/G.722, p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .LP
- .rs
- .sp 21P
- .ad r
- \fBFigure 12/G.722, p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .LP
- .bp
- .sp 1P
- .LP
- 2.5.3
- \fIGroup\(hydelay distortion with frequency\fR
- .sp 9p
- .RT
- .PP
- The group\(hydelay distortion, taking the minimum value of group delay
- as a reference, should satisfy the limits of the mask shown in
- Figure\ 13/G.722.
- .RT
- .LP
- .rs
- .sp 21P
- .ad r
- \fBFigure 13/G.722, p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .sp 1P
- .LP
- 2.5.4
- \fIIdle noise for the receive audio part\fR
- .sp 9p
- .RT
- .PP
- The unweighted noise power of the receive audio part measured in
- the frequency range 50\ to 7000\ Hz with a 14\(hybit all\(hyzero signal
- at its input
- should not exceed \(em75\ dBm0.
- .RT
- .sp 1P
- .LP
- 2.5.5
- \fISignal\(hyto\(hytotal distortion ratio as a function of input\fR
- \fIlevel\fR
- .sp 9p
- .RT
- .PP
- With a sine wave signal at a frequency excluding simple harmonic
- relationships with the 16\ kHz sampling frequency, applied to test point\
- A, the ratio of signal\(hyto\(hytotal distortion power as a function of
- input level measured unweighted in the frequency range 50\ to 7000\ Hz
- at test point\ B, should
- satisfy the limits of the mask shown in Figure\ 14/G.722. Two measurements
- should be performed, one at a frequency of about 1\ kHz and the other at a
- frequency of about 6\ kHz.
- .RT
- .LP
- .rs
- .sp 17P
- .ad r
- \fBFigure 14/G.722, p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .LP
- .bp
- .sp 1P
- .LP
- 2.5.6
- \fISignal\(hyto\(hytotal distortion ratio as a function of\fR
- \fIfrequency\fR
- .sp 9p
- .RT
- .PP
- With a sine wave signal at a level of \(em10 dBm0 applied to test
- point\ A, the ratio of signal\(hyto\(hytotal distortion power as a function of
- frequency measured unweighted in the frequency range 50\ to 7000\ Hz at test
- point\ B should satisfy the limits of the mask shown in Figure\ 15/G.722.
- .RT
- .LP
- .rs
- .sp 18P
- .ad r
- \fBFigure 15/G.722, p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .sp 1P
- .LP
- 2.5.7
- \fIVariation of gain with input level\fR
- .sp 9p
- .RT
- .PP
- With a sine wave signal at the nominal reference frequency of
- 1000\ Hz, but excluding the sub\(hymultiple of the 16\ kHz sampling frequency,
- applied to test point\ A, the gain variation as a function of input level
- relative to the gain at an input level of \(em10\ dBm0 measured selectively
- at test point\ B, should satisfy the limits of the mask shown in Figure\
- 16/G.722.
- .RT
- .LP
- .rs
- .sp 24P
- .ad r
- \fBFigure 16/G.722, p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .LP
- .bp
- .sp 1P
- .LP
- 2.5.8
- \fIIntermodulation\fR
- .sp 9p
- .RT
- .PP
- Under study.
- .RT
- .sp 1P
- .LP
- 2.5.9
- \fIGo/return crosstalk\fR
- .sp 9p
- .RT
- .PP
- The crosstalk from the transmit direction to the receive direction should
- be such that, with a sine wave signal at any frequency in the range
- 50\ to 7000\ Hz and at a level of +6\ dBm0 applied to test point\ A, the
- crosstalk level measured selectively at test point\ B should not exceed
- \(em64\ dBm0. The
- measurement should be made with a 14\(hybit all\(hyzero digital signal
- at the input to the receive audio part.
- .PP
- The crosstalk from the receive direction to the transmit direction
- should be such that, with a digitally simulated sine wave signal at any
- frequency in the range of 50\ to 7000\ Hz and a level of +6\ dBm0 applied
- to the input of the receive audio part, the crosstalk level measured selectively
- and with the measurement made digitally at the output of the transmit audio
- part
- should not exceed \(em64\ dBm0. The measurement should be made with no
- signal at
- test point\ A, but with the test point correctly terminated.
- .RT
- .sp 1P
- .LP
- 2.6
- \fITranscoding to and from 64 kbit/s PCM\fR
- .sp 9p
- .RT
- .PP
- For compatibility reasons with 64 kbit/s PCM, transcoding between 64\ kbit/s
- (7\ kHz) audio coding and 64\ kbit/s PCM should take account of the
- relevant specifications of Recommendations\ G.712, G.713 and\ G.714. When the
- audio signal is to be heard through a loudspeaker, more stringent
- specifications may be necessary. Further information may be found in
- Appendix\ I.
- .RT
- .sp 2P
- .LP
- \fB3\fR \fBSB\(hyADPCM encoder principles\fR
- .sp 1P
- .RT
- .PP
- A block diagram of the SB\(hyADPCM encoder is given in Figure 3/G.722.
- Block diagrams of the lower and higher sub\(hyband ADPCM encoders are given
- respectively in Figures\ 4/G.722 and\ 5/G.722.
- .PP
- Main variables used for the descriptions in \(sc\(sc 3 and 4 are
- summarized in Table\ 3/G.722. In these descriptions, index (\fIj\fR ) indicates
- a value corresponding to the current 16\ kHz sampling interval, index (\fIj\fR
- \(eml)
- indicates a value corresponding to the previous 16\ kHz sampling interval,
- index (\fIn\fR ) indicates a value corresponding
- to the current 8\ kHz sampling interval, and index\ (\fIn\fR \(em1)
- indicates a value corresponding to the previous 8\ kHz sampling interval.
- Indices are not used for internal variables, i.e.\ those employed only within
- individual computational blocks.
- .RT
- .sp 1P
- .LP
- 3.1
- \fITransmit QMF\fR
- .sp 9p
- .RT
- .PP
- A 24\(hycoefficient QMF is used to compute the lower and higher
- sub\(hyband signal components. The QMF coefficient values, \fIh\fR\d\fIi\fR\u,
- are
- given in Table\ 4/G.722.
- .PP
- The output variables, \fIx\fR\d\fIL\fR\u(\fIn\fR ) and
- \fIx\fR\d\fIH\fR\u(\fIn\fR ), are computed in the following way:
- \v'6p'
- .RT
- .ad r
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .sp 1P
- .LP
- 3.2
- \fIDifference signal computation\fR
- .sp 9p
- .RT
- .PP
- The difference signals, \fIe\fR\d\fIL\fR\u(\fIn\fR ) and
- \fIe\fR\d\fIH\fR\u(\fIn\fR ), are computed by subtracting predicted values,
- \fIs\fR\d\fIL\fR\u(\fIn\fR ) and \fIs\fR\d\fIH\fR\u(\fIn\fR ), from the
- lower and
- higher sub\(hyband input values, \fIx\fR\d\fIL\fR\u(\fIn\fR ) and
- \fIx\fR\d\fIH\fR\u(\fIn\fR ):
- \v'6p'
- .RT
- .ad r
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .LP
- .bp
- .ce
- \fBH.T. [T3.722]\fR
- .ce
- TABLE\ 3/G.722
- .ce
- \fBVariables used in the SB\(hyADPCM encoder and decoder descriptions\fR
- .ps 9
- .vs 11
- .nr VS 11
- .nr PS 9
- .TS
- center box;
- cw(48p) | cw(180p) .
- Variable Description
- _
- .T&
- lw(48p) | lw(180p) .
- x i n {
- Input value
- (uniform representation)
- }
- _
- .T&
- lw(48p) | lw(180p) .
- x L, x H QMF output signals
- _
- .T&
- lw(48p) | lw(180p) .
- S L p, S H p {
- Pole\(hypredictor output signals
- }
- _
- .T&
- lw(48p) | lw(180p) .
- a L , i, a H , i {
- Pole\(hypredictor coefficients
- }
- _
- .T&
- lw(48p) | lw(180p) .
- r L, r L t, r H {
- Reconstructed signals (non truncated and truncated)
- }
- _
- .T&
- lw(48p) | lw(180p) .
- b L , i, b H , i {
- Zero\(hypredictor coefficients
- }
- _
- .T&
- lw(48p) | lw(180p) .
- d L, d L t, d H {
- Quantized difference signals (non truncated and truncated)
- }
- _
- .T&
- lw(48p) | lw(180p) .
- S L z, S H z {
- Zero\(hypredictor output signals
- }
- _
- .T&
- lw(48p) | lw(180p) .
- S L, S H Predictor output signals
- _
- .T&
- lw(48p) | lw(180p) .
- e L, e H {
- Difference signals to be quantized
- }
- _
- .T&
- lw(48p) | lw(180p) .
- \(gr L, \(gr H {
- Logarithmic quantizer scale factors
- }
- _
- .T&
- lw(48p) | lw(180p) .
- ?63 L, ?63 H {
- Quantizer scale factor (linear)
- }
- _
- .T&
- lw(48p) | lw(180p) .
- I L, I L t, I H {
- Codewords (non truncated and truncated)
- }
- _
- .T&
- lw(48p) | lw(180p) .
- P L t, P H {
- Partially reconstructed signals
- }
- _
- .T&
- lw(48p) | lw(180p) .
- I L r {
- Received lower sub\(hyband codeword
- }
- _
- .T&
- lw(48p) | lw(180p) .
- X o u t Output value (uniform)
- .TE
- .LP
- \fINote\fR
- \ \(em\ Variables used exclusively within one section are not listed.
- Subscripts L and H refer to lower sub\(hyband and higher sub\(hyband values.
- Subscript Lt denotes values generated from the truncated\ 4\(hybit codeword as
- opposed to the nontruncated 6\(hybit (encoder) or\ 6\(hy, 5\(hy or 4\(hybit (decoder)
- codewords.
- .nr PS 9
- .RT
- .ad r
- \fBTableau 3/G.722 [T3.722], p. 19\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .LP
- .rs
- .sp 8P
- .ad r
- Blanc
- .ad b
- .RT
- .LP
- .bp
- .ce
- \fBH.T. [T4.722]\fR
- .ce
- TABLE\ 4/G.722
- .ce
- \fBTransmit and receive OMF coefficient values\fR
- .ps 9
- .vs 11
- .nr VS 11
- .nr PS 9
- .TS
- center box;
- cw(90p) | cw(90p) .
- {
- h
- 0\fB\fR\(da\fB1\fR
- , h
- 2
- 3
- } {
- \fB\(em\fR
- 0.366211E\(em03
- }
- .T&
- cw(90p) | cw(90p) .
- {
- h
- 1\fB\fR\(da\fB1\fR
- , h
- 2
- 2
- } \(em0.134277E\(em02
- .T&
- cw(90p) | cw(90p) .
- {
- h
- 2\fB\fR\(da\fB1\fR
- , h
- 2
- 1
- } \(em0.134277E\(em02
- .T&
- cw(90p) | cw(90p) .
- {
- h
- 3\fB\fR\(da\fB1\fR
- , h
- 2
- 0
- } {
- \fB\(em\fR
- 0.646973E\(em02
- }
- .T&
- cw(90p) | cw(90p) .
- {
- h
- 4\fB\fR\(da\fB1\fR
- , h
- 1
- 9
- } {
- \fB\(em\fR
- 0.146484E\(em02
- }
- .T&
- cw(90p) | cw(90p) .
- {
- h
- 5\fB\fR\(da\fB1\fR
- , h
- 1
- 8
- } \(em0.190430E\(em01
- .T&
- cw(90p) | cw(90p) .
- {
- h
- 6\fB\fR\(da\fB1\fR
- , h
- 1
- 7
- } {
- \fB\(em\fR
- 0.390625E\(em02
- }
- .T&
- cw(90p) | cw(90p) .
- {
- h
- 7\fB\fR\(da\fB1\fR
- , h
- 1
- 6
- } {
- \fB\(em\fR
- 0.441895E\(em01
- }
- .T&
- cw(90p) | cw(90p) .
- {
- h
- 8\fB\fR\(da\fB1\fR
- , h
- 1
- 5
- } \(em0.256348E\(em01
- .T&
- cw(90p) | cw(90p) .
- {
- h
- 9\fB\fR\(da\fB1\fR
- , h
- 1
- 4
- } \(em0.982666E\(em01
- .T&
- cw(90p) | cw(90p) .
- h 1 0, h 1 3 \fB\(em\fR 0.116089E+00
- .T&
- cw(90p) | cw(90p) .
- h 1 1, h\fR 1 2 \fB\(em\fR 0.473145E+00
- _
- .TE
- .nr PS 9
- .RT
- .ad r
- \fBTableau 4/G.722 [T4.722], p. 20\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .sp 1P
- .LP
- 3.3
- \fIAdaptive quantizer\fR
- .sp 9p
- .RT
- .PP
- The difference signals, \fIe\fR\d\fIL\fR\u(\fIn\fR ) and
- \fIe\fR\d\fIH\fR\u(\fIn\fR ), are quantized to 6\ and 2\ bits for the lower and
- higher sub\(hybands respectively. Tables\ 5/G.722 and\ 6/G.722 give the
- decision levels
- and the output codes for the 6\(hy and 2\(hybit quantizers respectively.
- In these tables, only the positive decision levels are indicated, the negative
- levels can be determined by symmetry.\ \fIm\fR\d\fIL\fR\uand\ \fIm\fR\d\fIH\fR\uare
- indices for the quantizer intervals. The interval boundaries,\ \fILL\fR
- 6, \fILU\fR 6, \fIHL\fR and\ \fIHU\fR , are scaled by computed scale factors,\
- ?63
- \fI\fI\d\fIL\fR\u(\fIn\fR )
- and\ ?63
- \fI\fI\d\fIH\fR\u(\fIn\fR ) (see \(sc\ 3.5). Indices,\ \fIm\fR\d\fIL\fR\u
- and\ \fIm\fR\d\fIH\fR\u, are then determined to satisfy the following:
- \v'6p'
- .RT
- .ad r
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .LP
- for the lower and higher sub\(hybands respectively.
- .PP
- The output codes, \fIILN\fR and \fIIHN\fR , represent negative intervals,
- whilst the output codes,\ \fIILP\fR and\ \fIIHP\fR , represent positive
- intervals. The
- output codes,\ \fII\fR\d\fIL\fR\u(\fIn\fR ) and\ \fII\fR\d\fIH\fR\u(\fIn\fR
- ), are then given by:
- \v'6p'
- .ad r
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .LP
- for the lower and higher sub\(hybands respectively.
- .bp
- .ce
- \fBH.T. [T5.722]\fR
- .ce
- TABLE\ 5/G.722
- .ce
- \fBDecision levels and output codes for the 6\(hybit lower sub\(hyband\fR
- .ce
- \fBquantizer\fR
- .ps 9
- .vs 11
- .nr VS 11
- .nr PS 9
- .TS
- center box;
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- m L LL6 LU6 ILN ILP
- _
- .T&
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- \ 1 \ 2 0.00000 0.06817 0.06817 0.14103 111111 111110 111101 111100
- _
- .T&
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- \ 3 \ 4 \ 5 \ 6 {
- 0.14103
- 0.21389
- 0.29212
- 0.37035
- } {
- 0.21389
- 0.29212
- 0.37035
- 0.45482
- } 011111 011110 011101 011100 111011 111010 111001 111000
- _
- .T&
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- \ 7 \ 8 \ 9 10 {
- 0.45482
- 0.53929
- 0.63107
- 0.72286
- } {
- 0.53929
- 0.63107
- 0.72286
- 0.82335
- } 011011 011010 011001 011000 110111 110110 110101 110100
- _
- .T&
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- 11 12 13 14 {
- 0.82335
- 0.92383
- 1.03485
- 1.14587
- } {
- 0.92383
- 1.03485
- 1.14587
- 1.26989
- } 010111 010110 010101 010100 110011 110010 110001 110000
- _
- .T&
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- 15 16 17 18 {
- 1.26989
- 1.39391
- 1.53439
- 1.67486
- } {
- 1.39391
- 1.53439
- 1.67486
- 1.83683
- } 010011 010010 010001 010000 101111 101110 101101 101100
- _
- .T&
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- 19 20 21 22 {
- 1.83683
- 1.99880
- 2.19006
- 2.38131
- } {
- 1.99880
- 2.19006
- 2.38131
- 2.61482
- } 001111 001110 001101 001100 101011 101010 101001 101000
- _
- .T&
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- 23 24 25 26 {
- 2.61482
- 2.84833
- 3.14822
- 3.44811
- } {
- 2.84833
- 3.14822
- 3.44811
- 3.86796
- } 001011 001010 001001 001000 100111 100110 100101 100100
- _
- .T&
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- 27 28 29 30 {
- 3.86796
- 4.28782
- 4.99498
- 5.70214
- } 4.28782 4.99498 5.70214 \(if 000111 000110 000101 000100 {
- 100011
- 100010
- 100001
- 100000
- }
- .TE
- .LP
- \fINote\fR
- \ \(em\ If a transmitted codeword for the lower sub\(hyband signal has been
- transformed, due to transmission errors to one of the four suppressed
- codewords\ \*Q0000XX\*U, the received code word is set at\ \*Q111111\*U.
- .nr PS 9
- .RT
- .ad r
- \fBTable 5/G.722 [T5.722], p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .ce
- \fBH.T. [T6.722]\fR
- .ce
- TABLE\ 6/G.722
- .ce
- \fBDecision levels and output codes for the 2\(hybit higher sub\(hyband\fR
- .ce
- \fBquantizer\fR
- .ps 9
- .vs 11
- .nr VS 11
- .nr PS 9
- .TS
- center box;
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- m H HL HH IHN IHP
- _
- .T&
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- 1 2 0 1.10156 1.10156 \(if 01 00 11 10
- _
- .TE
- .nr PS 9
- .RT
- .ad r
- \fBTable 6/G.722 [T6.722], p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .LP
- .bp
- .sp 2P
- .LP
- 3.4
- \fIInverse adaptive quantizers\fR
- .sp 1P
- .RT
- .sp 1P
- .LP
- 3.4.1
- \fIInverse adaptive quantizer in the lower sub\(hyband ADPCM encoder\fR
- .sp 9p
- .RT
- .PP
- The
- lower sub\(hyband
- output code, \fII\fR\d\fIL\fR\u(\fIn\fR ), is truncated by two bits to
- produce\ \fII\fR\d\fIL\fR\\d\fIt\fR\u(\fIn\fR ). The 4\(hybit
- codeword,\ \fII\fR\d\fIL\fR\\d\fIt\fR\u(\fIn\fR ), is converted to the
- truncated
- quantized difference signal
- , \fId\fR\d\fIL\fR\\d\fIt\fR\u(\fIn\fR ), using the
- \fIQL\fR 4\uD\dlF261\u1\d output values of Table\ 7/G.722, and scaled by the
- scale
- factor
- ,\ ?63
- \fI\fI\d\fIL\fR\u(\fIn\fR ):
- \v'6p'
- .RT
- .ad r
- .ad b
- .RT
- .LP
- where sgn [\fII\fR\d\fIL\fR\\d\fIt\fR\u(\fIn\fR )) is derived from the sign of
- \fIe\fR\d\fIL\fR\u(\fIn\fR ) defined in Equation\ 3\(hy9.
- .PP
- There is a unique mapping, shown in Table 7/G.722, between four
- adjacent 6\(hybit quantizer intervals and the\ \fIQL\fR 4\uD\dlF261\u1\d
- output values.
- \fIQL\fR 4\uD\dlF261\u1\d[\fII\fR\d\fIL\fR\\d\fIt\fR\u(\fIn\fR )] is determined
- in two steps: first determination of the
- quantizer interval index
- ,\ \fIm\fR\d\fIL\fR\u,
- corresponding to\ \fII\fR\d\fIL\fR\u(\fIn\fR ) from Table\ 5/G.722, and then
- determination of\ \fIQ\fR\d\fIL\fR\u | \uD\dlF261\u1\d(\fIm\fR\d\fIL\fR\u)
- by reference to
- Table\ 7/G.722.
- .ce
- \fBH.T. [T7.722]\fR
- .ce
- TABLE\ 7/G.722
- .ce
- \fBOutput values and multipliers for 6, 5 and 4\(hybit lower sub\(hyband\fR
- .ce
- \fBinverse quantizers\fR
- .ps 9
- .vs 11
- .nr VS 11
- .nr PS 9
- .TS
- center box;
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- m L QL6\uD\dlF261\u1\d QL5\uD\dlF261\u1\d QL4\uD\dlF261\u1\d W L
- _
- .T&
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- \fB.\fR \ 1 \ 2 \fB.\fR 0.03409 0.10460 {
- \fB.\fR
- 0.06817
- \fB.\fR
- } {
- 0.0000
- \fB.\fR
- \fB.\fR
- } {
- \(em0.02930
- \fB.\fR
- \fB.\fR
- }
- _
- .T&
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- \ 3 \ 4 \ 5 \ 6 {
- 0.17746
- 0.25300
- 0.33124
- 0.41259
- } {
- 0.21389
- \fB.\fR
- 0.37035
- \fB.\fR
- } {
- \fB.\fR
- 0.29212
- \fB.\fR
- \fB.\fR
- } {
- \fB.\fR
- \(em0.01465
- \fB.\fR
- \fB.\fR
- }
- _
- .T&
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- \ 7 \ 8 \ 9 10 {
- 0.49706
- 0.58518
- 0.67697
- 0.77310
- } {
- 0.53929
- \fB.\fR
- 0.72286
- \fB.\fR
- } {
- \fB.\fR
- 0.63107
- \fB.\fR
- \fB.\fR
- } {
- \fB.\fR
- \ 0.02832
- \fB.\fR
- \fB.\fR
- }
- _
- .T&
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- 11 12 13 14 {
- 0.87359
- 0.97934
- 1.09036
- 1.20788
- } {
- 0.92383
- \fB.\fR
- 1.14587
- \fB.\fR
- } {
- \fB.\fR
- 1.03485
- \fB.\fR
- \fB.\fR
- } {
- \fB.\fR
- \ 0.08398
- \fB.\fR
- \fB.\fR
- }
- _
- .T&
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- 15 16 17 18 {
- 1.33191
- 1.46415
- 1.60462
- 1.75585
- } {
- 1.39391
- \fB.\fR
- 1.67486
- \fB.\fR
- } {
- \fB.\fR
- 1.53439
- \fB.\fR
- \fB.\fR
- } {
- \fB.\fR
- \ 0.16309
- \fB.\fR
- \fB.\fR
- }
- _
- .T&
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- 19 20 21 22 {
- 1.91782
- 2.09443
- 2.28568
- 2.49806
- } {
- 1.99880
- \fB.\fR
- 2.38131
- \fB.\fR
- } {
- \fB.\fR
- 2.19006
- \fB.\fR
- \fB.\fR
- } {
- \fB.\fR
- \ 0.26270
- \fB.\fR
- \fB.\fR
- }
- _
- .T&
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- 23 24 25 26 {
- 2.73157
- 2.99827
- 3.29816
- 3.65804
- } {
- 2.84833
- \fB.\fR
- 3.44811
- \fB.\fR
- } {
- \fB.\fR
- 3.14822
- \fB.\fR
- \fB.\fR
- } {
- \fB.\fR
- \ 0.58496
- \fB.\fR
- \fB.\fR
- }
- _
- .T&
- cw(36p) | cw(48p) | cw(48p) | cw(48p) | cw(48p) .
- 27 28 29 30 {
- 4.07789
- 4.64140
- 5.34856
- 6.05572
- } {
- 4.28782
- \fB.\fR
- 5.70214
- \fB.\fR
- } {
- \fB.\fR
- 4.99498
- \fB.\fR
- \fB.\fR
- } {
- \fB.\fR
- \ 1.48535
- \fB.\fR
- \fB.\fR
- }
- _
- .TE
- .nr PS 9
- .RT
- .ad r
- \fBTable 7/G.722 [T7.722], p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .LP
- .bp
- .sp 1P
- .LP
- 3.4.2
- \fIInverse adaptive quantizer in the higher sub\(hyband ADPCM\fR
- \fIencoder\fR
- .sp 9p
- .RT
- .PP
- The
- higher sub\(hyband
- output code, \fII\fR\d\fIH\fR\u(\fIn\fR ) is converted to the quantized
- difference signal,\ \fId\fR\d\fIH\fR\u(\fIn\fR ),
- using the\ \fIQ\fR 2\uD\dlF261\u1\d output values of Table\ 8/G.722 and
- scaled by the scale factor,\ ?63\fI\fI\d\fIH\fR\u(\fIn\fR ):
- \v'6p'
- .RT
- .ad r
- .ad b
- .RT
- .LP
- where sgn[\fII\fR\d\fIH\fR\u(\fIn\fR )] is derived from the sign of
- \fIe\fR\d\fIH\fR\u(\fIn\fR ) defined in Equation\ (3\(hy10), and where
- \fIQ\fR\d2\u\uD\dlF261\u1\d[\fII\fR\d\fIH\fR\u(\fIn\fR )] is determined
- in two steps: first
- determine the quantizer interval index,\ \fIm\fR\d\fIH\fR\u, corresponding
- to\ \fII\fR\d\fIH\fR\u(\fIn\fR ) from Table\ 6/G.722 and then determine
- \fIQ\fR 2\uD\dlF261\u1\d(\fIm\fR\d\fIH\fR\u) by reference to Table\ 8/G.722.
- .ce
- \fBH.T. [T8.722]\fR
- .ce
- TABLE\ 8/G.722
- .ce
- \fBOutput values and multipliers for the 2\(hybit higher sub\(hyband\fR
- .ce
- \fBquantizer\fR
- .ps 9
- .vs 11
- .nr VS 11
- .nr PS 9
- .TS
- center box;
- cw(36p) | cw(48p) | cw(48p) .
- m H Q2\uD\dlF261\u1\d W H
- _
- .T&
- cw(36p) | cw(48p) | cw(48p) .
- 1 0.39453 \(em0.10449
- .T&
- cw(36p) | cw(48p) | cw(48p) .
- 2 1.80859 \ 0.38965
- _
- .TE
- .nr PS 9
- .RT
- .ad r
- \fBTableau 8/G.722 [T8.722],\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .LP
- .sp 1
- .sp 1P
- .LP
- 3.5
- \fIQuantizer adaptation\fR
- .sp 9p
- .RT
- .PP
- This block defines ?63
- \fI\fI\d\fIL\fR\u(\fIn\fR ) and
- ?63
- \fI\fI\d\fIH\fR\u(\fIn\fR ), the scaling factors for the lower and higher
- sub\(hyband quantizers. The scaling factors are updated in the log domain and
- subsequently converted to a linear representation. For the lower sub\(hyband,
- the input is\ \fII\fR\d\fIL\fR\\d\fIt\fR\u(\fIn\fR ), the codeword truncated
- to preserve the four most significant bits. For the higher sub\(hyband,
- the 2\(hybit quantizer
- output, \fII\fR\d\fIH\fR\u(\fIn\fR ), is used directly.
- .PP
- Firstly the log scaling factors, ?63
- \fI\fI\d\fIL\fR\u(\fIn\fR ) and
- ?63
- \fI\fI\d\fIH\fR\u(\fIn\fR ), are updated as follows:
- \v'6p'
- .RT
- .ad r
- \fI\fI\fI\fR
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .LP
- where \fIW\fR\d\fIL\fR\uand \fIW\fR\d\fIH\fR\uare logarithmic scaling factors
- multipliers given in Tables\ 7/G.722 and\ 8/G.722, and B is a
- leakage constant
- equal
- to\ 127/128.
- .PP
- Then the
- log scaling factors
- are limited, according
- to:
- \v'6p'
- .ad r
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .PP
- Finally, the
- linear scaling factors
- are computed from the
- log scaling factors, using an approximation of the inverse log\d2\ufunction:
- \v'6p'
- .ad r
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .LP
- where ?63
- \fI\fI\d\fIm\fR\\d\fIi\fR\\d\fIn\fR\uis equal to half the quantizer step
- size of the
- 14\ bit analogue\(hyto\(hydigital converter.
- .bp
- .sp 2P
- .LP
- 3.6
- \fIAdaptive prediction\fR
- .sp 1P
- .RT
- .sp 1P
- .LP
- 3.6.1
- \fIPredicted value computations\fR
- .sp 9p
- .RT
- .PP
- The adaptive predictors compute predicted signal values,
- \fIs\fR\d\fIL\fR\u(\fIn\fR ) and\ \fIs\fR\d\fIH\fR\u(\fIn\fR ), for the
- lower and higher sub\(hybands respectively.
- .PP
- Each
- adaptive predictor
- comprises two sections: a second\(hyorder section that models poles, and
- a sixth\(hyorder section that models zeroes in the input signal.
- .PP
- The second order
- pole sections
- (coefficients \fIa\fR\d\fIL\fR\\d,\u\fI\d\fIi\fR\uand\ \fIa\fR\d\fIH\fR\\d,\u\fIi\fR
- ) use the quantized reconstructed signals,
- \fIr\fRL\fI\d\fIt\fR\u(\fIn\fR ) and\ \fIr\fR\d\fIH\fR\u(\fIn\fR ), for
- prediction. The
- sixth order
- zero sections
- (coefficients\ \fIb\fR\d\fIL\fR\\d,\u\fI\fI\d\fIi\fR\u) and
- \fIb\fR\d\fIH\fR\\d,\u\fIi\fR ) use the quantized difference
- signals,\ \fId\fR\d\fIL\fR\\d\fIt\fR\u(\fIn\fR ) and\ \fId\fR\d\fIH\fR\u(\fIn\fR
- ). The
- zero\(hybased predicted signals,\ \fIs\fR\d\fIL\fR\\d\fIz\fR\u(\fIn\fR )
- and\ \fIs\fR\d\fIH\fR\\d\fIz\fR\u(\fIn\fR ), are also employed to compute
- partially
- reconstructed signals as described in \(sc\ 3.6.2.
- .PP
- Firstly, the outputs of the pole sections are computed as
- follows:
- \v'6p'
- .RT
- .ad r
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .PP
- Similarly, the outputs of the zero sections are computed as
- follows:
- \v'6p'
- .ad r
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .PP
- Then, the intermediate predicted values are summed to produce the predicted
- signal values:
- \v'6p'
- .ad r
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .sp 1P
- .LP
- 3.6.2
- \fIReconstructed signal computation\fR
- .sp 9p
- .RT
- .PP
- The quantized reconstructed signals, \fIr\fR\d\fIL\fR\\d\fIt\fR\u(\fIn\fR
- ) and\ \fIr\fR\d\fIH\fR\u(\fIn\fR ), are computed as follows:
- \v'6p'
- .RT
- .ad r
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .PP
- The partially reconstructed signals, \fIp\fR\d\fIL\fR\\d\fIt\fR\u(\fIn\fR
- ) and \fIp\dH\u\fR (\fIn\fR ), used for the pole section adaptation, are
- then
- computed:
- \v'6p'
- .ad r
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .LP
- .bp
- .sp 1P
- .LP
- 3.6.3
- \fIPole section adaptation\fR
- .sp 9p
- .RT
- .PP
- The second order pole section is adapted by updating the
- coefficients,\ \fIa\fR\d\fIL\fR\\d,\\d1\u, \fIa\fR\d\fIH\fR\\d,\\d1\u,
- \fIa\fR\d\fIH\fR\\d,\\d2\u, using a simplified gradient algorithm:
- \v'6p'
- .RT
- .ad r
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .LP
- where
- \v'6p'
- .ad r
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .LP
- with
- \v'6p'
- .ad r
- .ad b
- .RT
- .LP
- and
- \v'6p'
- .ad r
- .ad b
- .RT
- .PP
- Then the following stability constraints are imposed:
- \v'6p'
- .ad r
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .PP
- \fIa\fR\d\fIH\fR\\d,\\d1\u(\fIn\fR ) and \fIa\fR\d\fIH\fR\\d,\\d2\u(\fIn\fR
- ) are
- similarly computed, replacing\ \fIa\fR\d\fIL\fR\\d,\\d1\u(\fIn\fR ),
- \fIa\fR\d\fIL\fR\\d,\\d2\u(\fIn\fR ) and \fIP\fR\d\fIL\fR\\d\fIt\fR\u | \fIn\fR
- )
- by\ \fIa\fR\d\fIH\fR\\d,\\d1\u(\fIn\fR ), \fIa\fR\d\fIH\fR\\d,\\d2\u(\fIn\fR )
- and\ \fIP\fR\d\fIH\fR\u(\fIn\fR ), respectively.
- .sp 1P
- .LP
- 3.6.4
- \fIZero section adaptation\fR
- .sp 9p
- .RT
- .PP
- The sixth order zero predictor is adapted by updating the
- coefficients\ \fIb\fR\d\fIL\fR\\d,\u\fI\fI\d\fIi\fR\uand\ \fIb\fR\d\fIH\fR\\d,\u\fI\fI\d\fIi\fR\uusing
- a simplified
- gradient algorithm:
- \v'6p'
- .RT
- .ad r
- .ad b
- .RT
- .LP
- for \fIi\fR = 1, 2\ . | | \ 6
- .LP
- and with
- .ad r
- .ad b
- .RT
- .LP
- where \fIb\fR\d\fIL\fR\\d,\u\fI\fI\d\fIi\fR\u | \fIn\fR ) is implictly
- limited to \(+- | .
- .PP
- \fIb\fR\d\fIH\fR\\d,\u\fI\fI\d\fIi\fR\u(\fIn\fR ) are similarly updated,
- replacing\ \fIb\fR\d\fIL\fR\\d,\u\fI\fI\d\fIi\fR\u(\fIn\fR ) and\ \fId\fR\d\fIL\fR\\d\fIt\fR\u(\fIn\fR
- ) by\ \fIb\fR\d\fIH\fR\\d,\u\fI\fI\d\fIi\fR\u(\fIn\fR ) and\ \fId\fR\d\fIH\fR\u(\fIn\fR
- )
- respectively.
- .sp 2P
- .LP
- \fB4\fR \fBSB\(hyADPCM decoder principles\fR
- .sp 1P
- .RT
- .PP
- A block diagram of the SB\(hyADPCM decoder is given in Figure 6/G.722 and
- block diagrams of the lower and higher sub\(hyband ADPCM decoders are given
- respectively in Figures\ 7/G.722 and\ 8/G.722.
- .PP
- The input to the lower sub\(hyband ADPCM decoder, \fII\fR\d\fIL\fR\\d\fIr\fR\u,
- may differ from\ \fII\fR\d\fIL\fR\ueven in the absence of transmission
- errors, in that one
- or two least significant bits may have been replaced by data.
- .bp
- .RT
- .sp 2P
- .LP
- 4.1
- \fIInverse adaptive quantizer\fR
- .sp 1P
- .RT
- .sp 1P
- .LP
- 4.1.1
- \fIInverse adaptive quantizer selection for the lower sub\(hyband\fR
- \fIADPCM decoder\fR
- .sp 9p
- .RT
- .PP
- According to the received indication of the mode of operation the number
- of least significant bits which should be truncated from the input
- codeword\ \fII\fR\d\fIL\fR\\d\fIr\fR\u, and the choice of the inverse adaptive
- quantizer
- are determined, as shown in Table\ 2/G.722.
- .PP
- For operation in mode 1, the 6\(hybit codeword,
- \fII\fR\d\fIL\fR\\d\fIr\fR\u(\fIn\fR ), is converted to the quantized difference,
- \fId\fR\d\fIL\fR\u(\fIn\fR ), according to\ \fIQL\fR 6\uD\dlF261\u1\d output
- values of
- Table\ 7/G.722, and scaled by the scale factor,
- \ ?63
- \fI\fI\d\fIL\fR\u(\fIn\fR ):
- \v'6p'
- .RT
- .ad r
- .ad b
- .RT
- .LP
- where sgn[\fII\fR\d\fIL\fR\\d\fIr\fR\u(\fIn\fR )] is derived from the sign of
- \fII\fR\d\fIL\fR\u(\fIn\fR ) defined in equation (3\(hy9).
- .PP
- Similarly, for operations in mode 2 or mode 3, the
- truncated codeword
- (by one or two bits) is converted to the quantized difference
- signal, \fId\fR\d\fIL\fR\u(\fIn\fR ), according to\ \fIQL\fR 5\uD\dlF261\u1\d\fR
- or\ \fIQL\fR 4\uD\dlF261\u1\d\fR output values of Table\ 7/G.722 respectively.
- .PP
- \fR There are unique mappings, shown in Table 7/G.722, between two or
- four adjacent 6\(hybit quantizer intervals and the\ \fIQL\fR 5\uD\dlF261\u1\d
- or\ \fIQL\fR 4\uD\dlF261\u1\d output values respectively.
- .PP
- In the computations above, the output values are determined in two
- steps: first determination of the quantizer interval index,\ \fIm\fR\d\fIL\fR\u,
- corresponding to\ \fII\fR\d\fIL\fR\\d\fIr\fR\u(\fIn\fR ) from Table\ 5/G.722,
- and then
- determination of the output values corresponding to\ \fIm\fR\d\fIL\fR\uby
- reference to
- Table\ 7/G.722.
- .PP
- The inverse adaptive quantizer, used for the computation of the
- predicted value and for adaptation of the quantizer and predictor, is described
- in \(sc\ 3.4.1, but with\ \fII\fR\d\fIL\fR\u(\fIn\fR ) replaced
- by\ \fII\fR\d\fIL\fR\\d\fIr\fR\u(\fIn\fR ).
- .RT
- .sp 1P
- .LP
- 4.1.2
- \fIInverse adaptive quantizer for the higher sub\(hyband ADPCM\fR
- \fIdecoder\fR
- .sp 9p
- .RT
- .PP
- See \(sc 3.4.2.
- .RT
- .sp 1P
- .LP
- 4.2
- \fIQuantizer adaptation\fR
- .sp 9p
- .RT
- .PP
- See \(sc 3.5.
- .RT
- .sp 2P
- .LP
- 4.3
- \fIAdaptive prediction\fR
- .sp 1P
- .RT
- .sp 1P
- .LP
- 4.3.1
- \fIPredicted value computation\fR
- .sp 9p
- .RT
- .PP
- See \(sc 3.6.1.
- .RT
- .sp 1P
- .LP
- 4.3.2
- \fIReconstructed signal computation\fR
- .sp 9p
- .RT
- .PP
- See \(sc 3.6.2.
- .PP
- The output reconstructed signal for the lower sub\(hyband ADPCM
- decoder,\ \fIr\fR\d\fIL\fR\u(\fIn\fR ), is computed from the quantized
- difference
- signal,\ \fId\fR\d\fIL\fR\u(\fIn\fR ), as follows:
- \v'6p'
- .RT
- .ad r
- .ad b
- .RT
- .sp 1P
- .LP
- 4.3.3
- \fIPole section adaptation\fR
- .sp 9p
- .RT
- .PP
- See \(sc 3.6.3.
- .RT
- .sp 1P
- .LP
- 4.3.4
- \fIZero section adaptation\fR
- .sp 9p
- .RT
- .PP
- See \(sc 3.6.4.
- .RT
- .sp 1P
- .LP
- 4.4
- \fIReceive QMF\fR
- .sp 9p
- .RT
- .PP
- A 24\(hycoefficient QMF is used to reconstruct the output signal,
- \fIx\fR\do\\du\\dt\u(
- \fIj\fR ), from the reconstructed lower and
- higher sub\(hyband
- signals,\ \fIr\fR\d\fIL\fR\u(\fIn\fR ) and\ \fIr\fR\d\fIH\fR\u(\fIn\fR
- ). The QMF
- coefficient values,\ \fIh\fR\d\fIi\fR\u, are the same as those used in
- the transmit QMF and are given in Table\ 4/G.722.
- .bp
- .PP
- The output signals, \fIx\fR\do\\du\\dt\u(
- \fIj\fR ) and
- \fIx\fR\do\\du\\dt\u(
- \fIj\fR \ +\ 1), are computed in the following
- way:
- \v'6p'
- .RT
- .ad r
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .LP
- where
- \v'6p'
- .ad r
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .sp 2P
- .LP
- \fB5\fR \fBComputational details for QMF\fR
- .sp 1P
- .RT
- .sp 1P
- .LP
- 5.1
- \fIInput and output signals\fR
- .sp 9p
- .RT
- .PP
- Table 9/G.722 defines the input and output signals for the transmit and
- receive\ QMF. All input and output signals have 16\(hybit\ word lengths,
- which are limited to a range of \(em16384 to\ 16383 in\ 2's complement
- notation. Note that the most significant magnitude bit of the\ A/D output
- and the\ D/A input appears at the third bit location in\ XIN and\ XOUT,
- respectively.
- .RT
- .ce
- \fBH.T. [T9.722]\fR
- .ce
- TABLE\ 9/G.722
- .ce
- \fBRepresentation of input and output signals\fR
- .ps 9
- .vs 11
- .nr VS 11
- .nr PS 9
- .TS
- center box;
- cw(228p) .
- Transmit QMF
- .TE
- .TS
- center box;
- lw(36p) | cw(24p) | cw(84p) | cw(84p) .
- Name Binary representation Description
- _
- .T&
- lw(36p) | lw(24p) | cw(84p) | lw(84p) .
- Input XIN {
- S, S, \(em2, \(em3, . | | , \(em14, \(em15
- } {
- Input value
- (uniformly quantized)
- }
- .T&
- lw(36p) | lw(24p) | cw(84p) | lw(84p) .
- Output XL {
- S, S, \(em2, \(em3, . | | , \(em14, \(em15
- } {
- Output signal for lower sub\(hyband encoder
- }
- .T&
- lw(36p) | lw(24p) | cw(84p) | lw(84p) .
- Output XH {
- S, S, \(em2, \(em3, . | | , \(em14, \(em15
- } {
- Output signal for higher sub\(hyband encoder
- }
- _
- .T&
- cw(228p) .
- Receive QMF
- _
- .T&
- lw(36p) | cw(24p) | cw(84p) | cw(84p) .
- Name Binary representation Description
- _
- .T&
- lw(36p) | lw(24p) | cw(84p) | lw(84p) .
- Input RL {
- S, S, \(em2, \(em3, . | | , \(em14, \(em15
- } {
- Lower sub\(hyband reconstructed signal
- }
- .T&
- lw(36p) | lw(24p) | cw(84p) | lw(84p) .
- Input RH {
- S, S, \(em2, \(em3, . | | , \(em14, \(em15
- } {
- Higher sub\(hyband reconstructed signal
- }
- .T&
- lw(36p) | lw(24p) | cw(84p) | lw(84p) .
- Output XOUT {
- S, S, \(em2, \(em3, . | | , \(em14, \(em15
- } {
- Output value
- (uniformly quantized)
- }
- .TE
- .LP
- \fINote\fR
- \ \(em\ XIN and XOUT are represented in a sign\(hyextended 15\(hybit format,
- where the LSB is set to \*Q0\*U for 14\(hybit converters.
- .nr PS 9
- .RT
- .ad r
- \fBTable 9/G.722 [T9.722], p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .LP
- .bp
- .sp 1P
- .LP
- 5.2
- \fIDescription of variables and detailed specification of sub\(hyblocks\fR
- .sp 9p
- .RT
- .PP
- This section contains a detailed expansion of the transmit and
- receive\ QMF. The expansions are illustrated in Figures\ 17/G.722 and\ 18/G.722
- with the internal variables given in Table\ 10/G.722, and the\ QMF coefficients
- given in Table\ 11/G.722. The word lengths of internal variables, XA, XB
- and\ WD must be equal to or greater than 24\ bits (see Note). The other
- internal
- variables have a minimum of 16 bit word lengths. A brief functional description
- and the full specification is given for each sub\(hyblock.
- .PP
- \fR The notations used in the block descriptions are as
- follows:
- .RT
- .LP
- >
- > |
- denotes an \fIn\fR \(hybit arithmetic shift right operation
- (sign extension),
- .LP
- +
- denotes arithmetic addition with saturation control which
- forces the result to the minimum or maximum representable value
- in case of underflow or overflow, respectively,
- .LP
- \(em
- denotes arithmetic subtraction with saturation control
- which forces the result to the minimum or maximum representable
- value in case of underflow or overflow, respectively.
- .LP
- *
- denotes arithmetic multiplication which can be performed
- with either truncation or rounding,
- .LP
- <
- denotes the \*Qless than\*U condition as \fIx\fR < | fIy\fR ; \fIx\fR is less
- than \fIy\fR ,
- .LP
- >
- denotes the \*Qgreater than\*U condition, as \fIx\fR > | fIy\fR ; \fIx\fR is
- greater than \fIy\fR ,
- .LP
- =
- denotes the substitution of the right\(hyhand variable for the
- left\(hyhand variable.
- .PP
- \fINote\ 1\fR \ \(em\ Some freedom is offered for the implementation of
- the accumulation process in the QMF: the word lengths of the internal variables
- can be equal to or greater than 24\ bits, and the arithmetic multiplications
- can be performed with either truncation or rounding. It allows a simplified
- implementation on various types of processors. The counterpart is that it
- excludes the use of digital test sequence for the test of the QMF.
- .ce
- \fBH.T. [T10.722]\fR
- .ce
- TABLE\ 10/G.722
- .ce
- \fBRepresentation of internal processing variables and QMF\fR
- .ce
- \fBcoefficients\fR
- .ps 9
- .vs 11
- .nr VS 11
- .nr PS 9
- .TS
- center box;
- cw(228p) .
- Transmit QMF
- _
- .T&
- cw(54p) | cw(84p) | cw(90p) .
- Name Binary representation Description
- _
- .T&
- lw(54p) | lw(84p) | lw(90p) .
- XA {
- S, \(em1, \(em2, \(em3, . | | , \(emy+1, \(emy
- } {
- Output signal of sub\(hyblock, ACCUMA
- }
- .T&
- lw(54p) | lw(84p) | lw(90p) .
- XB {
- S, \(em1, \(em2, \(em3, . | | , \(emy+1, \(emy
- } {
- Output signal of sub\(hyblock, ACCUMB
- }
- .T&
- lw(54p) | lw(84p) | lw(90p) .
- XIN1, XIN2, . | | , XIN23 {
- S, \ S, \(em2, \(em3, . | | , \(em14, \(em15
- } {
- Input signal with delays 1 to 23
- }
- _
- .T&
- cw(228p) .
- Receive QMF
- _
- .T&
- cw(54p) | cw(84p) | cw(90p) .
- Name Binary representation Description
- _
- .T&
- lw(54p) | lw(84p) | lw(90p) .
- XD, XD1, . | | , XD11 {
- S, \(em1, \(em2, \(em3, . | | , \(em14, \(em15
- } {
- Input signal for sub\(hyblock, ACCUMC, with delays 0 to 11
- }
- .T&
- lw(54p) | lw(84p) | lw(90p) .
- XOUT1 {
- S, \ S, \(em2, \(em3, . | | , \(em14, \(em15
- } 8 kHz sampled output value
- .T&
- lw(54p) | lw(84p) | lw(90p) .
- XOUT2 {
- S, \ S, \(em2, \(em3, . | | , \(em14, \(em15
- } 8 kHz sampled output value
- .T&
- lw(54p) | lw(84p) | lw(90p) .
- XS, XS1, . | | , XS11 {
- S, \(em1, \(em2, \(em3, . | | , \(em14, \(em15
- } {
- Input signal for sub\(hyblock, ACCUMD, with delays 0 to 11
- }
- .T&
- lw(54p) | lw(84p) | lw(90p) .
- WD {
- S, \(em1, \(em2, \(em3, . | | , \(emy+1, \(emy
- } Partial sum
- _
- .T&
- cw(228p) .
- QMF coefficients
- _
- .T&
- cw(54p) | cw(84p) | cw(90p) .
- Name Binary representation Description
- _
- .T&
- lw(54p) | lw(84p) | lw(90p) .
- H0, H1, . | | , H23 {
- S, \(em2, \(em3, \(em4, . | | , \(em12, \(em13
- } {
- Filter coefficient values
- }
- .TE
- .LP
- \fINote\fR
- \ \(em\ y is equal to or greater than 23.
- .nr PS 9
- .RT
- .ad r
- \fBTable 10/G.722 [T10.722], p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .LP
- .bp
- .ce
- \fBH.T. [T11.722]\fR
- .ce
- TABLE\ 11/G.722
- .ce
- \fBQMF coefficient\fR
- .ps 9
- .vs 11
- .nr VS 11
- .nr PS 9
- .TS
- center box;
- cw(84p) | cw(60p) .
- Coefficient Scaled values (see Note)
- _
- .T&
- cw(84p) | cw(60p) .
- H0\ , H23 \ \ \ 3
- .T&
- cw(84p) | cw(60p) .
- H1\ , H22 \ \(em11
- .T&
- cw(84p) | cw(60p) .
- H2\ , H21 \ \(em11
- .T&
- cw(84p) | cw(60p) .
- H3\ , H20 \ \ 53
- .T&
- cw(84p) | cw(60p) .
- H4\ , H19 \ \ 12
- .T&
- cw(84p) | cw(60p) .
- H5\ , H18 \(em156
- .T&
- cw(84p) | cw(60p) .
- H6\ , H17 \ \ 32
- .T&
- cw(84p) | cw(60p) .
- H7\ , H16 \ 362
- .T&
- cw(84p) | cw(60p) .
- H8\ , H15 \(em210
- .T&
- cw(84p) | cw(60p) .
- H9\ , H14 \(em805
- .T&
- cw(84p) | cw(60p) .
- H10 , H13 \ 951
- .T&
- cw(84p) | cw(60p) .
- H11 , H12 \ 3876
- .TE
- .LP
- \fINote\fR
- \ \(em\ QMF coefficients are scaled by 2\u1\d\u3\d with respect to the
- representation specified in Table\ 10/G.722.
- .nr PS 9
- .RT
- .ad r
- \fBTable 11/G.722 [T11.722], p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .sp 1P
- .LP
- 5.2.1
- \fIDescription of the transmit QMF\fR
- .sp 9p
- .RT
- .LP
- .rs
- .sp 20P
- .ad r
- \fBFigure 17/G.722, p.\fR
- .sp 1P
- .RT
- .ad b
- .RT
- .ad r
- .ad b
- .RT
- .LP
- .bp
- .sp 1P
- .ce 1000
- DELAYX
- .sp 9p
- .RT
- .ce 0
- .sp 1P
- .LP
- Input:
- x
- .LP
- Output:
- y
- .LP
- \fINote\fR \ \(em\ Index (
- \fIj\fR ) indicates the current 16\(hykHz sample period,
- while index (
- \fIj\fR \ \(em\ 1) indicates the previous one.
- .LP
- Function:
- Memory block. For any input x, the output is given by:
- .LP
- \fIy\fR (
- \fIj\fR ) = \fIx\fR (
- \fIj\fR \ \(em\ 1)
- .ad r
- .ad b
- .RT
- .sp 1P
- .ce 1000
- ACCUMA
- .sp 9p
- .RT
- .ce 0
- .sp 1P
- .LP
- Inputs:
- XIN, XIN2, XIN4, . | | , XIN22
- .LP
- Output:
- XA
- .LP
- \fINote\ 1\fR \ \(em\ H0, H2, . | | , H22 are obtained from Table 11/G.722.
- .LP
- \fINote\ 2\fR \ \(em\ The values XIN, XIN2, . | | , XIN22 and H0, H2,
- . | | , H22 may be
- shifted before multiplication, if so desired. The result\ XA must be rescaled
- accordingly, In performing these scaling operations the following rules
- must be obeyed:
- .LP
- 1)
- the precision of XIN, XIN2, . | | , XIN22 and H0, H2, . | | , H22 as
- given in Table\ 9/G.722 and Table\ 10/G.722 must be retained,
- .LP
- 2)
- the partial products and the ouptut signal XA must be
- retained to a significance of at least\ 2\uD\dlF261\u2\d\u3\d,
- .LP
- 3)
- no saturation should occur in the calculation of the
- function\ XA.
- .LP
- \fINote\ 3\fR \ \(em\ No order of summation is specified in accumulating
- the partial
- products.
- .LP
- Function:
- Multiply the even order QMF coefficients by the appropriately
- delayed input signals, and accumulate these products.
- .LP
- XA = (XIN
- *
- H0) + (XIN2
- *
- H2) + (XIN4
- *
- H4) + . | | + (XIN22
- *
- H22)
- .ad r
- .ad b
- .RT
- .sp 1P
- .ce 1000
- ACCUMB
- .sp 9p
- .RT
- .ce 0
- .sp 1P
- .LP
- Inputs:
- XIN1, XIN3, XIN5, . | | , XIN23
- .LP
- Output:
- XB
- .LP
- \fINote\ 1\fR \ \(em\ H1, H3, . | | , H23 are obtained from Table 11/G.722.
- .LP
- \fINote\ 2\fR \ \(em\ The values XIN1, XIN3, . | | , XIN23 and H1, H3,
- . | | , H23 may be
- shifted before multiplication, if so desired. The result\ XB must be rescaled
- accordingly. In performing these scaling operations the following rules
- must be obeyed:
- .LP
- 1)
- the precision of XIN1, XIN3, . | | , XIN23 and H1, H3, . | | , H23
- as given in Table\ 9/G.722 and Table\ 10/G.722 must be retained,
- .LP
- 2)
- the partial products and the output signal X3 must be
- retained to a significance of at least\ 2\uD\dlF261\u2\d\u3\d,
- .LP
- 3)
- no saturation should occur in the calculation of the
- function\ XB.
- .LP
- \fINote\ 3\fR \ \(em\ No order of summation is specified in accumulating
- the partial
- products.
- .LP
- Function:
- Multiply the odd order QMF coefficients by the appropriately
- delayed input signals, and accumulate these products.
- .LP
- XB = (XIN1
- *
- H1) + (XIN3
- *
- H3) + (XIN5
- *
- H5) + . | | + (XIN23
- *
- H23)
- .ad r
- .ad b
- .RT
- .LP
- .bp
- .sp 1P
- .ce 1000
- LOWT
- .sp 9p
- .RT
- .ce 0
- .sp 1P
- .LP
- Inputs:
- XA, XB
- .LP
- Output:
- XL
- .LP
- Function:
- Compute the lower sub\(hyband signal component.
- .LP
- XL = (XA + XB) >
- > (y \(em 15)
- [Formula Deleted]
- .LP
-