home *** CD-ROM | disk | FTP | other *** search
- /* Plug-compatible replacement for UNIX qsort.
- Copyright (C) 1989 Free Software Foundation, Inc.
- Written by Douglas C. Schmidt (schmidt@ics.uci.edu)
-
- This file is part of GNU CC.
-
- GNU QSORT is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 1, or (at your option)
- any later version.
-
- GNU QSORT is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU QSORT; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- #ifdef sparc
- #include <alloca.h>
- #endif
-
- /* Invoke the comparison function, returns either 0, < 0, or > 0. */
- #define CMP(A,B) ((*cmp)((A),(B)))
-
- /* Byte-wise swap two items of size SIZE. */
- #define SWAP(A,B,SIZE) do {int sz = (SIZE); char *a = (A); char *b = (B); \
- do { char _temp = *a;*a++ = *b;*b++ = _temp;} while (--sz);} while (0)
-
- /* Copy SIZE bytes from item B to item A. */
- #define COPY(A,B,SIZE) {int sz = (SIZE); do { *(A)++ = *(B)++; } while (--sz); }
-
- /* This should be replaced by a standard ANSI macro. */
- #define BYTES_PER_WORD 8
-
- /* The next 4 #defines implement a very fast in-line stack abstraction. */
- #define STACK_SIZE (BYTES_PER_WORD * sizeof (long))
- #define PUSH(LOW,HIGH) do {top->lo = LOW;top++->hi = HIGH;} while (0)
- #define POP(LOW,HIGH) do {LOW = (--top)->lo;HIGH = top->hi;} while (0)
- #define STACK_NOT_EMPTY (stack < top)
-
- /* Discontinue quicksort algorithm when partition gets below this size.
- This particular magic number was chosen to work best on a Sun 4/260. */
- #define MAX_THRESH 4
-
- /* Stack node declarations used to store unfulfilled partition obligations. */
- typedef struct
- {
- char *lo;
- char *hi;
- } stack_node;
-
- /* Order size using quicksort. This implementation incorporates
- four optimizations discussed in Sedgewick:
-
- 1. Non-recursive, using an explicit stack of pointer that store the
- next array partition to sort. To save time, this maximum amount
- of space required to store an array of MAX_INT is allocated on the
- stack. Assuming a 32-bit integer, this needs only 32 *
- sizeof (stack_node) == 136 bits. Pretty cheap, actually.
-
- 2. Chose the pivot element using a median-of-three decision tree.
- This reduces the probability of selecting a bad pivot value and
- eliminates certain extraneous comparisons.
-
- 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
- insertion sort to order the MAX_THRESH items within each partition.
- This is a big win, since insertion sort is faster for small, mostly
- sorted array segments.
-
- 4. The larger of the two sub-partitions is always pushed onto the
- stack first, with the algorithm then concentrating on the
- smaller partition. This *guarantees* no more than log (n)
- stack size is needed (actually O(1) in this case)! */
-
- int
- qsort (base_ptr, total_elems, size, cmp)
- char *base_ptr;
- int total_elems;
- int size;
- int (*cmp)();
- {
- /* Allocating SIZE bytes for a pivot buffer facilitates a better
- algorithm below since we can do comparisons directly on the pivot. */
- char *pivot_buffer = (char *) alloca (size);
- int max_thresh = MAX_THRESH * size;
-
- if (total_elems > MAX_THRESH)
- {
- char *lo = base_ptr;
- char *hi = lo + size * (total_elems - 1);
- stack_node stack[STACK_SIZE]; /* Largest size needed for 32-bit int!!! */
- stack_node *top = stack + 1;
-
- while (STACK_NOT_EMPTY)
- {
- char *left_ptr;
- char *right_ptr;
- {
- char *pivot = pivot_buffer;
- {
- /* Select median value from among LO, MID, and HI. Rearrange
- LO and HI so the three values are sorted. This lowers the
- probability of picking a pathological pivot value and
- skips a comparison for both the LEFT_PTR and RIGHT_PTR. */
-
- char *mid = lo + size * ((hi - lo) / size >> 1);
-
- if (CMP (mid, lo) < 0)
- SWAP (mid, lo, size);
- if (CMP (hi, mid) < 0)
- SWAP (mid, hi, size);
- else
- goto jump_over;
- if (CMP (mid, lo) < 0)
- SWAP (mid, lo, size);
- jump_over:
- COPY (pivot, mid, size);
- pivot = pivot_buffer;
- }
- left_ptr = lo + size;
- right_ptr = hi - size;
-
- /* Here's the famous ``collapse the walls'' section of quicksort.
- Gotta like those tight inner loops! They are the main reason
- that this algorithm runs much faster than others. */
- do
- {
- while (CMP (left_ptr, pivot) < 0)
- left_ptr += size;
-
- while (CMP (pivot, right_ptr) < 0)
- right_ptr -= size;
-
- if (left_ptr < right_ptr)
- {
- SWAP (left_ptr, right_ptr, size);
- left_ptr += size;
- right_ptr -= size;
- }
- else if (left_ptr == right_ptr)
- {
- left_ptr += size;
- right_ptr -= size;
- break;
- }
- }
- while (left_ptr <= right_ptr);
-
- }
-
- /* Set up pointers for next iteration. First determine whether
- left and right partitions are below the threshold size. If so,
- ignore one or both. Otherwise, push the larger partition's
- bounds on the stack and continue sorting the smaller one. */
-
- if ((right_ptr - lo) <= max_thresh)
- {
- if ((hi - left_ptr) <= max_thresh) /* Ignore both small partitions. */
- POP (lo, hi);
- else /* Ignore small left partition. */
- lo = left_ptr;
- }
- else if ((hi - left_ptr) <= max_thresh) /* Ignore small right partition. */
- hi = right_ptr;
- else if ((right_ptr - lo) > (hi - left_ptr)) /* Push larger left partition indices. */
- {
- PUSH (lo, right_ptr);
- lo = left_ptr;
- }
- else /* Push larger right partition indices. */
- {
- PUSH (left_ptr, hi);
- hi = right_ptr;
- }
- }
- }
-
- /* Once the BASE_PTR array is partially sorted by quicksort the rest
- is completely sorted using insertion sort, since this is efficient
- for partitions below MAX_THRESH size. BASE_PTR points to the beginning
- of the array to sort, and END_PTR points at the very last element in
- the array (*not* one beyond it!). */
-
- #define MIN(X,Y) ((X) < (Y) ? (X) : (Y))
-
- {
- char *end_ptr = base_ptr + size * (total_elems - 1);
- char *run_ptr;
- char *tmp_ptr = base_ptr;
- char *thresh = MIN (end_ptr, base_ptr + max_thresh);
-
- /* Find smallest element in first threshold and place it at the
- array's beginning. This is the smallest array element,
- and the operation speeds up insertion sort's inner loop. */
-
- for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
- if (CMP (run_ptr, tmp_ptr) < 0)
- tmp_ptr = run_ptr;
-
- if (tmp_ptr != base_ptr)
- SWAP (tmp_ptr, base_ptr, size);
-
- /* Insertion sort, running from left-hand-side up to `right-hand-side.'
- Pretty much straight out of the original GNU qsort routine. */
-
- for (run_ptr = base_ptr + size; (tmp_ptr = run_ptr += size) <= end_ptr; )
- {
-
- while (CMP (run_ptr, tmp_ptr -= size) < 0)
- ;
-
- if ((tmp_ptr += size) != run_ptr)
- {
- char *trav;
-
- for (trav = run_ptr + size; --trav >= run_ptr;)
- {
- char c = *trav;
- char *hi, *lo;
-
- for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
- *hi = *lo;
- *hi = c;
- }
- }
-
- }
- }
- return 1;
- }
-
-