home *** CD-ROM | disk | FTP | other *** search
- /*-
- * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
- * Copyright (c) 1991 The Regents of the University of California.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * This product includes software developed by the University of
- * California, Berkeley and its contributors.
- * 4. Neither the name of the University nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * @(#)kern_synch.c 7.18 (Berkeley) 6/27/91
- */
-
- #include "param.h"
- #include "systm.h"
- #include "proc.h"
- #include "kernel.h"
- #include "buf.h"
- #include "signalvar.h"
- #include "resourcevar.h"
-
- #include "machine/cpu.h"
-
- u_char curpri; /* usrpri of curproc */
-
- /*
- * Force switch among equal priority processes every 100ms.
- */
- roundrobin()
- {
-
- need_resched();
- timeout(roundrobin, (caddr_t)0, hz / 10);
- }
-
- /*
- * constants for digital decay and forget
- * 90% of (p_cpu) usage in 5*loadav time
- * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
- * Note that, as ps(1) mentions, this can let percentages
- * total over 100% (I've seen 137.9% for 3 processes).
- *
- * Note that hardclock updates p_cpu and p_cpticks independently.
- *
- * We wish to decay away 90% of p_cpu in (5 * loadavg) seconds.
- * That is, the system wants to compute a value of decay such
- * that the following for loop:
- * for (i = 0; i < (5 * loadavg); i++)
- * p_cpu *= decay;
- * will compute
- * p_cpu *= 0.1;
- * for all values of loadavg:
- *
- * Mathematically this loop can be expressed by saying:
- * decay ** (5 * loadavg) ~= .1
- *
- * The system computes decay as:
- * decay = (2 * loadavg) / (2 * loadavg + 1)
- *
- * We wish to prove that the system's computation of decay
- * will always fulfill the equation:
- * decay ** (5 * loadavg) ~= .1
- *
- * If we compute b as:
- * b = 2 * loadavg
- * then
- * decay = b / (b + 1)
- *
- * We now need to prove two things:
- * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
- * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
- *
- * Facts:
- * For x close to zero, exp(x) =~ 1 + x, since
- * exp(x) = 0! + x**1/1! + x**2/2! + ... .
- * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
- * For x close to zero, ln(1+x) =~ x, since
- * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
- * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
- * ln(.1) =~ -2.30
- *
- * Proof of (1):
- * Solve (factor)**(power) =~ .1 given power (5*loadav):
- * solving for factor,
- * ln(factor) =~ (-2.30/5*loadav), or
- * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
- * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
- *
- * Proof of (2):
- * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
- * solving for power,
- * power*ln(b/(b+1)) =~ -2.30, or
- * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
- *
- * Actual power values for the implemented algorithm are as follows:
- * loadav: 1 2 3 4
- * power: 5.68 10.32 14.94 19.55
- */
-
- /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
- #define loadfactor(loadav) (2 * (loadav))
- #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
-
- /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
- fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
-
- /*
- * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
- * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
- * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
- *
- * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
- * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
- *
- * If you dont want to bother with the faster/more-accurate formula, you
- * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
- * (more general) method of calculating the %age of CPU used by a process.
- */
- #define CCPU_SHIFT 11
-
- /*
- * Recompute process priorities, once a second
- */
- schedcpu()
- {
- register fixpt_t loadfac = loadfactor(averunnable[0]);
- register struct proc *p;
- register int s;
- register unsigned int newcpu;
-
- wakeup((caddr_t)&lbolt);
- for (p = allproc; p != NULL; p = p->p_nxt) {
- /*
- * Increment time in/out of memory and sleep time
- * (if sleeping). We ignore overflow; with 16-bit int's
- * (remember them?) overflow takes 45 days.
- */
- p->p_time++;
- if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
- p->p_slptime++;
- p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
- /*
- * If the process has slept the entire second,
- * stop recalculating its priority until it wakes up.
- */
- if (p->p_slptime > 1)
- continue;
- /*
- * p_pctcpu is only for ps.
- */
- #if (FSHIFT >= CCPU_SHIFT)
- p->p_pctcpu += (hz == 100)?
- ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
- 100 * (((fixpt_t) p->p_cpticks)
- << (FSHIFT - CCPU_SHIFT)) / hz;
- #else
- p->p_pctcpu += ((FSCALE - ccpu) *
- (p->p_cpticks * FSCALE / hz)) >> FSHIFT;
- #endif
- p->p_cpticks = 0;
- newcpu = (u_int) decay_cpu(loadfac, p->p_cpu) + p->p_nice;
- p->p_cpu = min(newcpu, UCHAR_MAX);
- setpri(p);
- s = splhigh(); /* prevent state changes */
- if (p->p_pri >= PUSER) {
- #define PPQ (128 / NQS) /* priorities per queue */
- if ((p != curproc) &&
- p->p_stat == SRUN &&
- (p->p_flag & SLOAD) &&
- (p->p_pri / PPQ) != (p->p_usrpri / PPQ)) {
- remrq(p);
- p->p_pri = p->p_usrpri;
- setrq(p);
- } else
- p->p_pri = p->p_usrpri;
- }
- splx(s);
- }
- vmmeter();
- if (bclnlist != NULL)
- wakeup((caddr_t)pageproc);
- timeout(schedcpu, (caddr_t)0, hz);
- }
-
- /*
- * Recalculate the priority of a process after it has slept for a while.
- * For all load averages >= 1 and max p_cpu of 255, sleeping for at least
- * six times the loadfactor will decay p_cpu to zero.
- */
- updatepri(p)
- register struct proc *p;
- {
- register unsigned int newcpu = p->p_cpu;
- register fixpt_t loadfac = loadfactor(averunnable[0]);
-
- if (p->p_slptime > 5 * loadfac)
- p->p_cpu = 0;
- else {
- p->p_slptime--; /* the first time was done in schedcpu */
- while (newcpu && --p->p_slptime)
- newcpu = (int) decay_cpu(loadfac, newcpu);
- p->p_cpu = min(newcpu, UCHAR_MAX);
- }
- setpri(p);
- }
-
- #define SQSIZE 0100 /* Must be power of 2 */
- #define HASH(x) (( (int) x >> 5) & (SQSIZE-1))
- struct slpque {
- struct proc *sq_head;
- struct proc **sq_tailp;
- } slpque[SQSIZE];
-
- /*
- * During autoconfiguration or after a panic, a sleep will simply
- * lower the priority briefly to allow interrupts, then return.
- * The priority to be used (safepri) is machine-dependent, thus this
- * value is initialized and maintained in the machine-dependent layers.
- * This priority will typically be 0, or the lowest priority
- * that is safe for use on the interrupt stack; it can be made
- * higher to block network software interrupts after panics.
- */
- int safepri;
-
- /*
- * General sleep call.
- * Suspends current process until a wakeup is made on chan.
- * The process will then be made runnable with priority pri.
- * Sleeps at most timo/hz seconds (0 means no timeout).
- * If pri includes PCATCH flag, signals are checked
- * before and after sleeping, else signals are not checked.
- * Returns 0 if awakened, EWOULDBLOCK if the timeout expires.
- * If PCATCH is set and a signal needs to be delivered,
- * ERESTART is returned if the current system call should be restarted
- * if possible, and EINTR is returned if the system call should
- * be interrupted by the signal (return EINTR).
- */
- tsleep(chan, pri, wmesg, timo)
- caddr_t chan;
- int pri;
- char *wmesg;
- int timo;
- {
- register struct proc *p = curproc;
- register struct slpque *qp;
- register s;
- int sig, catch = pri & PCATCH;
- extern int cold;
- int endtsleep();
-
- s = splhigh();
- if (cold || panicstr) {
- /*
- * After a panic, or during autoconfiguration,
- * just give interrupts a chance, then just return;
- * don't run any other procs or panic below,
- * in case this is the idle process and already asleep.
- */
- splx(safepri);
- splx(s);
- return (0);
- }
- #ifdef DIAGNOSTIC
- if (chan == 0 || p->p_stat != SRUN || p->p_rlink)
- panic("tsleep");
- #endif
- p->p_wchan = chan;
- p->p_wmesg = wmesg;
- p->p_slptime = 0;
- p->p_pri = pri & PRIMASK;
- qp = &slpque[HASH(chan)];
- if (qp->sq_head == 0)
- qp->sq_head = p;
- else
- *qp->sq_tailp = p;
- *(qp->sq_tailp = &p->p_link) = 0;
- if (timo)
- timeout(endtsleep, (caddr_t)p, timo);
- /*
- * We put ourselves on the sleep queue and start our timeout
- * before calling CURSIG, as we could stop there, and a wakeup
- * or a SIGCONT (or both) could occur while we were stopped.
- * A SIGCONT would cause us to be marked as SSLEEP
- * without resuming us, thus we must be ready for sleep
- * when CURSIG is called. If the wakeup happens while we're
- * stopped, p->p_wchan will be 0 upon return from CURSIG.
- */
- if (catch) {
- p->p_flag |= SSINTR;
- if (sig = CURSIG(p)) {
- if (p->p_wchan)
- unsleep(p);
- p->p_stat = SRUN;
- goto resume;
- }
- if (p->p_wchan == 0) {
- catch = 0;
- goto resume;
- }
- }
- p->p_stat = SSLEEP;
- p->p_stats->p_ru.ru_nvcsw++;
- swtch();
- resume:
- curpri = p->p_usrpri;
- splx(s);
- p->p_flag &= ~SSINTR;
- if (p->p_flag & STIMO) {
- p->p_flag &= ~STIMO;
- if (catch == 0 || sig == 0)
- return (EWOULDBLOCK);
- } else if (timo)
- untimeout(endtsleep, (caddr_t)p);
- if (catch && (sig != 0 || (sig = CURSIG(p)))) {
- if (p->p_sigacts->ps_sigintr & sigmask(sig))
- return (EINTR);
- return (ERESTART);
- }
- return (0);
- }
-
- /*
- * Implement timeout for tsleep.
- * If process hasn't been awakened (wchan non-zero),
- * set timeout flag and undo the sleep. If proc
- * is stopped, just unsleep so it will remain stopped.
- */
- endtsleep(p)
- register struct proc *p;
- {
- int s = splhigh();
-
- if (p->p_wchan) {
- if (p->p_stat == SSLEEP)
- setrun(p);
- else
- unsleep(p);
- p->p_flag |= STIMO;
- }
- splx(s);
- }
-
- /*
- * Short-term, non-interruptable sleep.
- */
- sleep(chan, pri)
- caddr_t chan;
- int pri;
- {
- register struct proc *p = curproc;
- register struct slpque *qp;
- register s;
- extern int cold;
-
- #ifdef DIAGNOSTIC
- if (pri > PZERO) {
- printf("sleep called with pri %d > PZERO, wchan: %x\n",
- pri, chan);
- panic("old sleep");
- }
- #endif
- s = splhigh();
- if (cold || panicstr) {
- /*
- * After a panic, or during autoconfiguration,
- * just give interrupts a chance, then just return;
- * don't run any other procs or panic below,
- * in case this is the idle process and already asleep.
- */
- splx(safepri);
- splx(s);
- return;
- }
- #ifdef DIAGNOSTIC
- if (chan==0 || p->p_stat != SRUN || p->p_rlink)
- panic("sleep");
- #endif
- p->p_wchan = chan;
- p->p_wmesg = NULL;
- p->p_slptime = 0;
- p->p_pri = pri;
- qp = &slpque[HASH(chan)];
- if (qp->sq_head == 0)
- qp->sq_head = p;
- else
- *qp->sq_tailp = p;
- *(qp->sq_tailp = &p->p_link) = 0;
- p->p_stat = SSLEEP;
- p->p_stats->p_ru.ru_nvcsw++;
- swtch();
- curpri = p->p_usrpri;
- splx(s);
- }
-
- /*
- * Remove a process from its wait queue
- */
- unsleep(p)
- register struct proc *p;
- {
- register struct slpque *qp;
- register struct proc **hp;
- int s;
-
- s = splhigh();
- if (p->p_wchan) {
- hp = &(qp = &slpque[HASH(p->p_wchan)])->sq_head;
- while (*hp != p)
- hp = &(*hp)->p_link;
- *hp = p->p_link;
- if (qp->sq_tailp == &p->p_link)
- qp->sq_tailp = hp;
- p->p_wchan = 0;
- }
- splx(s);
- }
-
- /*
- * Wakeup on "chan"; set all processes
- * sleeping on chan to run state.
- */
- wakeup(chan)
- register caddr_t chan;
- {
- register struct slpque *qp;
- register struct proc *p, **q;
- int s;
-
- s = splhigh();
- qp = &slpque[HASH(chan)];
- restart:
- for (q = &qp->sq_head; p = *q; ) {
- #ifdef DIAGNOSTIC
- if (p->p_rlink || p->p_stat != SSLEEP && p->p_stat != SSTOP)
- panic("wakeup");
- #endif
- if (p->p_wchan == chan) {
- p->p_wchan = 0;
- *q = p->p_link;
- if (qp->sq_tailp == &p->p_link)
- qp->sq_tailp = q;
- if (p->p_stat == SSLEEP) {
- /* OPTIMIZED INLINE EXPANSION OF setrun(p) */
- if (p->p_slptime > 1)
- updatepri(p);
- p->p_slptime = 0;
- p->p_stat = SRUN;
- if (p->p_flag & SLOAD)
- setrq(p);
- /*
- * Since curpri is a usrpri,
- * p->p_pri is always better than curpri.
- */
- if ((p->p_flag&SLOAD) == 0)
- wakeup((caddr_t)&proc0);
- else
- need_resched();
- /* END INLINE EXPANSION */
- goto restart;
- }
- } else
- q = &p->p_link;
- }
- splx(s);
- }
-
- /*
- * Initialize the (doubly-linked) run queues
- * to be empty.
- */
- rqinit()
- {
- register int i;
-
- for (i = 0; i < NQS; i++)
- qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
- }
-
- /*
- * Change process state to be runnable,
- * placing it on the run queue if it is in memory,
- * and awakening the swapper if it isn't in memory.
- */
- setrun(p)
- register struct proc *p;
- {
- register int s;
-
- s = splhigh();
- switch (p->p_stat) {
-
- case 0:
- case SWAIT:
- case SRUN:
- case SZOMB:
- default:
- panic("setrun");
-
- case SSTOP:
- case SSLEEP:
- unsleep(p); /* e.g. when sending signals */
- break;
-
- case SIDL:
- break;
- }
- p->p_stat = SRUN;
- if (p->p_flag & SLOAD)
- setrq(p);
- splx(s);
- if (p->p_slptime > 1)
- updatepri(p);
- p->p_slptime = 0;
- if ((p->p_flag&SLOAD) == 0)
- wakeup((caddr_t)&proc0);
- else if (p->p_pri < curpri)
- need_resched();
- }
-
- /*
- * Compute priority of process when running in user mode.
- * Arrange to reschedule if the resulting priority
- * is better than that of the current process.
- */
- setpri(p)
- register struct proc *p;
- {
- register unsigned int newpri;
-
- newpri = PUSER + p->p_cpu / 4 + 2 * p->p_nice;
- newpri = min(newpri, MAXPRI);
- p->p_usrpri = newpri;
- if (newpri < curpri)
- need_resched();
- }
-