home *** CD-ROM | disk | FTP | other *** search
- /*-
- * Copyright (c) 1992 The Regents of the University of California.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * This product includes software developed by the University of
- * California, Berkeley and its contributors.
- * 4. Neither the name of the University nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
-
- #ifndef lint
- static char sccsid[] = "@(#)lgamma.c 5.11 (Berkeley) 12/16/92";
- #endif /* not lint */
-
- /*
- * Coded by Peter McIlroy, Nov 1992;
- *
- * The financial support of UUNET Communications Services is greatfully
- * acknowledged.
- */
-
- #include <math.h>
- #include <errno.h>
-
- #include "mathimpl.h"
-
- /* Log gamma function.
- * Error: x > 0 error < 1.3ulp.
- * x > 4, error < 1ulp.
- * x > 9, error < .6ulp.
- * x < 0, all bets are off. (When G(x) ~ 1, log(G(x)) ~ 0)
- * Method:
- * x > 6:
- * Use the asymptotic expansion (Stirling's Formula)
- * 0 < x < 6:
- * Use gamma(x+1) = x*gamma(x) for argument reduction.
- * Use rational approximation in
- * the range 1.2, 2.5
- * Two approximations are used, one centered at the
- * minimum to ensure monotonicity; one centered at 2
- * to maintain small relative error.
- * x < 0:
- * Use the reflection formula,
- * G(1-x)G(x) = PI/sin(PI*x)
- * Special values:
- * non-positive integer returns +Inf.
- * NaN returns NaN
- */
- static int endian;
- #if defined(vax) || defined(tahoe)
- #define _IEEE 0
- /* double and float have same size exponent field */
- #define TRUNC(x) x = (double) (float) (x)
- #else
- #define _IEEE 1
- #define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
- #define infnan(x) 0.0
- #endif
-
- extern double log1p(double);
- static double small_lgam(double);
- static double large_lgam(double);
- static double neg_lgam(double);
- static double zero = 0.0, one = 1.0;
- int signgam;
-
- #define UNDERFL (1e-1020 * 1e-1020)
-
- #define LEFT (1.0 - (x0 + .25))
- #define RIGHT (x0 - .218)
- /*
- /* Constants for approximation in [1.244,1.712]
- */
- #define x0 0.461632144968362356785
- #define x0_lo -.000000000000000015522348162858676890521
- #define a0_hi -0.12148629128932952880859
- #define a0_lo .0000000007534799204229502
- #define r0 -2.771227512955130520e-002
- #define r1 -2.980729795228150847e-001
- #define r2 -3.257411333183093394e-001
- #define r3 -1.126814387531706041e-001
- #define r4 -1.129130057170225562e-002
- #define r5 -2.259650588213369095e-005
- #define s0 1.714457160001714442e+000
- #define s1 2.786469504618194648e+000
- #define s2 1.564546365519179805e+000
- #define s3 3.485846389981109850e-001
- #define s4 2.467759345363656348e-002
- /*
- * Constants for approximation in [1.71, 2.5]
- */
- #define a1_hi 4.227843350984671344505727574870e-01
- #define a1_lo 4.670126436531227189e-18
- #define p0 3.224670334241133695662995251041e-01
- #define p1 3.569659696950364669021382724168e-01
- #define p2 1.342918716072560025853732668111e-01
- #define p3 1.950702176409779831089963408886e-02
- #define p4 8.546740251667538090796227834289e-04
- #define q0 1.000000000000000444089209850062e+00
- #define q1 1.315850076960161985084596381057e+00
- #define q2 6.274644311862156431658377186977e-01
- #define q3 1.304706631926259297049597307705e-01
- #define q4 1.102815279606722369265536798366e-02
- #define q5 2.512690594856678929537585620579e-04
- #define q6 -1.003597548112371003358107325598e-06
- /*
- * Stirling's Formula, adjusted for equal-ripple. x in [6,Inf].
- */
- #define lns2pi .418938533204672741780329736405
- #define pb0 8.33333333333333148296162562474e-02
- #define pb1 -2.77777777774548123579378966497e-03
- #define pb2 7.93650778754435631476282786423e-04
- #define pb3 -5.95235082566672847950717262222e-04
- #define pb4 8.41428560346653702135821806252e-04
- #define pb5 -1.89773526463879200348872089421e-03
- #define pb6 5.69394463439411649408050664078e-03
- #define pb7 -1.44705562421428915453880392761e-02
-
- double
- lgamma(double x)
- {
- double r;
-
- signgam = 1;
- endian = ((*(int *) &one)) ? 1 : 0;
-
- if (!finite(x))
- if (_IEEE)
- return (x+x);
- else return (infnan(EDOM));
-
- if (x > 6 + RIGHT) {
- r = large_lgam(x);
- return (r);
- } else if (x > 1e-16)
- return (small_lgam(x));
- else if (x > -1e-16) {
- if (x < 0)
- signgam = -1, x = -x;
- return (-log(x));
- } else
- return (neg_lgam(x));
- }
-
- static double
- large_lgam(double x)
- {
- double z, p, x1;
- int i;
- struct Double t, u, v;
- u = log__D(x);
- u.a -= 1.0;
- if (x > 1e15) {
- v.a = x - 0.5;
- TRUNC(v.a);
- v.b = (x - v.a) - 0.5;
- t.a = u.a*v.a;
- t.b = x*u.b + v.b*u.a;
- if (_IEEE == 0 && !finite(t.a))
- return(infnan(ERANGE));
- return(t.a + t.b);
- }
- x1 = 1./x;
- z = x1*x1;
- p = pb0+z*(pb1+z*(pb2+z*(pb3+z*(pb4+z*(pb5+z*(pb6+z*pb7))))));
- /* error in approximation = 2.8e-19 */
-
- p = p*x1; /* error < 2.3e-18 absolute */
- /* 0 < p < 1/64 (at x = 5.5) */
- v.a = x = x - 0.5;
- TRUNC(v.a); /* truncate v.a to 26 bits. */
- v.b = x - v.a;
- t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */
- t.b = v.b*u.a + x*u.b;
- t.b += p; t.b += lns2pi; /* return t + lns2pi + p */
- return (t.a + t.b);
- }
-
- static double
- small_lgam(double x)
- {
- int x_int;
- double y, z, t, r = 0, p, q, hi, lo;
- struct Double rr;
- x_int = (x + .5);
- y = x - x_int;
- if (x_int <= 2 && y > RIGHT) {
- t = y - x0;
- y--; x_int++;
- goto CONTINUE;
- } else if (y < -LEFT) {
- t = y +(1.0-x0);
- CONTINUE:
- z = t - x0_lo;
- p = r0+z*(r1+z*(r2+z*(r3+z*(r4+z*r5))));
- q = s0+z*(s1+z*(s2+z*(s3+z*s4)));
- r = t*(z*(p/q) - x0_lo);
- t = .5*t*t;
- z = 1.0;
- switch (x_int) {
- case 6: z = (y + 5);
- case 5: z *= (y + 4);
- case 4: z *= (y + 3);
- case 3: z *= (y + 2);
- rr = log__D(z);
- rr.b += a0_lo; rr.a += a0_hi;
- return(((r+rr.b)+t+rr.a));
- case 2: return(((r+a0_lo)+t)+a0_hi);
- case 0: r -= log1p(x);
- default: rr = log__D(x);
- rr.a -= a0_hi; rr.b -= a0_lo;
- return(((r - rr.b) + t) - rr.a);
- }
- } else {
- p = p0+y*(p1+y*(p2+y*(p3+y*p4)));
- q = q0+y*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*q6)))));
- p = p*(y/q);
- t = (double)(float) y;
- z = y-t;
- hi = (double)(float) (p+a1_hi);
- lo = a1_hi - hi; lo += p; lo += a1_lo;
- r = lo*y + z*hi; /* q + r = y*(a0+p/q) */
- q = hi*t;
- z = 1.0;
- switch (x_int) {
- case 6: z = (y + 5);
- case 5: z *= (y + 4);
- case 4: z *= (y + 3);
- case 3: z *= (y + 2);
- rr = log__D(z);
- r += rr.b; r += q;
- return(rr.a + r);
- case 2: return (q+ r);
- case 0: rr = log__D(x);
- r -= rr.b; r -= log1p(x);
- r += q; r-= rr.a;
- return(r);
- default: rr = log__D(x);
- r -= rr.b;
- q -= rr.a;
- return (r+q);
- }
- }
- }
-
- static double
- neg_lgam(double x)
- {
- int xi;
- double y, z, one = 1.0, zero = 0.0;
- extern double gamma();
-
- /* avoid destructive cancellation as much as possible */
- if (x > -170) {
- xi = x;
- if (xi == x)
- if (_IEEE)
- return(one/zero);
- else
- return(infnan(ERANGE));
- y = gamma(x);
- if (y < 0)
- y = -y, signgam = -1;
- return (log(y));
- }
- z = floor(x + .5);
- if (z == x) { /* convention: G(-(integer)) -> +Inf */
- if (_IEEE)
- return (one/zero);
- else
- return (infnan(ERANGE));
- }
- y = .5*ceil(x);
- if (y == ceil(y))
- signgam = -1;
- x = -x;
- z = fabs(x + z); /* 0 < z <= .5 */
- if (z < .25)
- z = sin(M_PI*z);
- else
- z = cos(M_PI*(0.5-z));
- z = log(M_PI/(z*x));
- y = large_lgam(x);
- return (z - y);
- }
-