home *** CD-ROM | disk | FTP | other *** search
- /*---------------------------------------------------------------------------+
- | poly_atan.c |
- | |
- | Compute the arctan of a FPU_REG, using a polynomial approximation. |
- | |
- | Copyright (C) 1992,1993,1994 |
- | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
- | Australia. E-mail billm@vaxc.cc.monash.edu.au |
- | |
- | |
- +---------------------------------------------------------------------------*/
-
- #include "exception.h"
- #include "reg_constant.h"
- #include "fpu_emu.h"
- #include "status_w.h"
- #include "control_w.h"
- #include "poly.h"
-
-
- #define HIPOWERon 6 /* odd poly, negative terms */
- static const unsigned long long oddnegterms[HIPOWERon] =
- {
- 0x0000000000000000LL, /* Dummy (not for - 1.0) */
- 0x015328437f756467LL,
- 0x0005dda27b73dec6LL,
- 0x0000226bf2bfb91aLL,
- 0x000000ccc439c5f7LL,
- 0x0000000355438407LL
- } ;
-
- #define HIPOWERop 6 /* odd poly, positive terms */
- static const unsigned long long oddplterms[HIPOWERop] =
- {
- /* 0xaaaaaaaaaaaaaaabLL, transferred to fixedpterm[] */
- 0x0db55a71875c9ac2LL,
- 0x0029fce2d67880b0LL,
- 0x0000dfd3908b4596LL,
- 0x00000550fd61dab4LL,
- 0x0000001c9422b3f9LL,
- 0x000000003e3301e1LL
- };
-
- static const unsigned long long denomterm = 0xebd9b842c5c53a0eLL;
-
- static const Xsig fixedpterm = MK_XSIG(0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa);
-
- static const Xsig pi_signif = MK_XSIG(0xc90fdaa2, 0x2168c234, 0xc4c6628b);
-
-
- /*--- poly_atan() -----------------------------------------------------------+
- | |
- +---------------------------------------------------------------------------*/
- void poly_atan(FPU_REG *arg1, FPU_REG *arg2, FPU_REG *result)
- {
- char transformed, inverted,
- sign1 = arg1->sign, sign2 = arg2->sign;
- long int exponent, dummy_exp;
- Xsig accumulator, Numer, Denom, accumulatore, argSignif,
- argSq, argSqSq;
-
-
- arg1->sign = arg2->sign = SIGN_POS;
- if ( (compare(arg2) & ~COMP_Denormal) == COMP_A_lt_B )
- {
- inverted = 1;
- exponent = arg1->exp - arg2->exp;
- Numer.lsw = Denom.lsw = 0;
- XSIG_LL(Numer) = significand(arg1);
- XSIG_LL(Denom) = significand(arg2);
- }
- else
- {
- inverted = 0;
- exponent = arg2->exp - arg1->exp;
- Numer.lsw = Denom.lsw = 0;
- XSIG_LL(Numer) = significand(arg2);
- XSIG_LL(Denom) = significand(arg1);
- }
- div_Xsig(&Numer, &Denom, &argSignif);
- exponent += norm_Xsig(&argSignif);
-
- if ( (exponent >= -1)
- || ((exponent == -2) && (argSignif.msw > 0xd413ccd0)) )
- {
- /* The argument is greater than sqrt(2)-1 (=0.414213562...) */
- /* Convert the argument by an identity for atan */
- transformed = 1;
-
- if ( exponent >= 0 )
- {
- #ifdef PARANOID
- if ( !( (exponent == 0) &&
- (argSignif.lsw == 0) && (argSignif.midw == 0) &&
- (argSignif.msw == 0x80000000) ) )
- {
- EXCEPTION(EX_INTERNAL|0x104); /* There must be a logic error */
- return;
- }
- #endif PARANOID
- argSignif.msw = 0; /* Make the transformed arg -> 0.0 */
- }
- else
- {
- Numer.lsw = Denom.lsw = argSignif.lsw;
- XSIG_LL(Numer) = XSIG_LL(Denom) = XSIG_LL(argSignif);
-
- if ( exponent < -1 )
- shr_Xsig(&Numer, -1-exponent);
- negate_Xsig(&Numer);
-
- shr_Xsig(&Denom, -exponent);
- Denom.msw |= 0x80000000;
-
- div_Xsig(&Numer, &Denom, &argSignif);
-
- exponent = -1 + norm_Xsig(&argSignif);
- }
- }
- else
- {
- transformed = 0;
- }
-
- argSq.lsw = argSignif.lsw; argSq.midw = argSignif.midw;
- argSq.msw = argSignif.msw;
- mul_Xsig_Xsig(&argSq, &argSq);
-
- argSqSq.lsw = argSq.lsw; argSqSq.midw = argSq.midw; argSqSq.msw = argSq.msw;
- mul_Xsig_Xsig(&argSqSq, &argSqSq);
-
- accumulatore.lsw = argSq.lsw;
- XSIG_LL(accumulatore) = XSIG_LL(argSq);
-
- shr_Xsig(&argSq, 2*(-1-exponent-1));
- shr_Xsig(&argSqSq, 4*(-1-exponent-1));
-
- /* Now have argSq etc with binary point at the left
- .1xxxxxxxx */
-
- /* Do the basic fixed point polynomial evaluation */
- accumulator.msw = accumulator.midw = accumulator.lsw = 0;
- polynomial_Xsig(&accumulator, &XSIG_LL(argSqSq),
- oddplterms, HIPOWERop-1);
- mul64_Xsig(&accumulator, &XSIG_LL(argSq));
- negate_Xsig(&accumulator);
- polynomial_Xsig(&accumulator, &XSIG_LL(argSqSq), oddnegterms, HIPOWERon-1);
- negate_Xsig(&accumulator);
- add_two_Xsig(&accumulator, &fixedpterm, &dummy_exp);
-
- mul64_Xsig(&accumulatore, &denomterm);
- shr_Xsig(&accumulatore, 1 + 2*(-1-exponent));
- accumulatore.msw |= 0x80000000;
-
- div_Xsig(&accumulator, &accumulatore, &accumulator);
-
- mul_Xsig_Xsig(&accumulator, &argSignif);
- mul_Xsig_Xsig(&accumulator, &argSq);
-
- shr_Xsig(&accumulator, 3);
- negate_Xsig(&accumulator);
- add_Xsig_Xsig(&accumulator, &argSignif);
-
- if ( transformed )
- {
- /* compute pi/4 - accumulator */
- shr_Xsig(&accumulator, -1-exponent);
- negate_Xsig(&accumulator);
- add_Xsig_Xsig(&accumulator, &pi_signif);
- exponent = -1;
- }
-
- if ( inverted )
- {
- /* compute pi/2 - accumulator */
- shr_Xsig(&accumulator, -exponent);
- negate_Xsig(&accumulator);
- add_Xsig_Xsig(&accumulator, &pi_signif);
- exponent = 0;
- }
-
- if ( sign1 )
- {
- /* compute pi - accumulator */
- shr_Xsig(&accumulator, 1 - exponent);
- negate_Xsig(&accumulator);
- add_Xsig_Xsig(&accumulator, &pi_signif);
- exponent = 1;
- }
-
- exponent += round_Xsig(&accumulator);
- significand(result) = XSIG_LL(accumulator);
- result->exp = exponent + EXP_BIAS;
- result->tag = TW_Valid;
- result->sign = sign2;
-
- }
-