home *** CD-ROM | disk | FTP | other *** search
- /* Target-dependent code for the SPARC for GDB, the GNU debugger.
- Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994
- Free Software Foundation, Inc.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- #include "defs.h"
- #include "frame.h"
- #include "inferior.h"
- #include "obstack.h"
- #include "target.h"
- #include "value.h"
-
- #ifdef USE_PROC_FS
- #include <sys/procfs.h>
- #endif
-
- #include "gdbcore.h"
-
- /* From infrun.c */
- extern int stop_after_trap;
-
- /* We don't store all registers immediately when requested, since they
- get sent over in large chunks anyway. Instead, we accumulate most
- of the changes and send them over once. "deferred_stores" keeps
- track of which sets of registers we have locally-changed copies of,
- so we only need send the groups that have changed. */
-
- int deferred_stores = 0; /* Cumulates stores we want to do eventually. */
-
- typedef enum
- {
- Error, not_branch, bicc, bicca, ba, baa, ticc, ta
- } branch_type;
-
- /* Simulate single-step ptrace call for sun4. Code written by Gary
- Beihl (beihl@mcc.com). */
-
- /* npc4 and next_pc describe the situation at the time that the
- step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
- static CORE_ADDR next_pc, npc4, target;
- static int brknpc4, brktrg;
- typedef char binsn_quantum[BREAKPOINT_MAX];
- static binsn_quantum break_mem[3];
-
- /* Non-zero if we just simulated a single-step ptrace call. This is
- needed because we cannot remove the breakpoints in the inferior
- process until after the `wait' in `wait_for_inferior'. Used for
- sun4. */
-
- int one_stepped;
-
- /* single_step() is called just before we want to resume the inferior,
- if we want to single-step it but there is no hardware or kernel single-step
- support (as on all SPARCs). We find all the possible targets of the
- coming instruction and breakpoint them.
-
- single_step is also called just after the inferior stops. If we had
- set up a simulated single-step, we undo our damage. */
-
- void
- single_step (ignore)
- int ignore; /* pid, but we don't need it */
- {
- branch_type br, isannulled();
- CORE_ADDR pc;
- long pc_instruction;
-
- if (!one_stepped)
- {
- /* Always set breakpoint for NPC. */
- next_pc = read_register (NPC_REGNUM);
- npc4 = next_pc + 4; /* branch not taken */
-
- target_insert_breakpoint (next_pc, break_mem[0]);
- /* printf_unfiltered ("set break at %x\n",next_pc); */
-
- pc = read_register (PC_REGNUM);
- pc_instruction = read_memory_integer (pc, sizeof(pc_instruction));
- br = isannulled (pc_instruction, pc, &target);
- brknpc4 = brktrg = 0;
-
- if (br == bicca)
- {
- /* Conditional annulled branch will either end up at
- npc (if taken) or at npc+4 (if not taken).
- Trap npc+4. */
- brknpc4 = 1;
- target_insert_breakpoint (npc4, break_mem[1]);
- }
- else if (br == baa && target != next_pc)
- {
- /* Unconditional annulled branch will always end up at
- the target. */
- brktrg = 1;
- target_insert_breakpoint (target, break_mem[2]);
- }
-
- /* We are ready to let it go */
- one_stepped = 1;
- return;
- }
- else
- {
- /* Remove breakpoints */
- target_remove_breakpoint (next_pc, break_mem[0]);
-
- if (brknpc4)
- target_remove_breakpoint (npc4, break_mem[1]);
-
- if (brktrg)
- target_remove_breakpoint (target, break_mem[2]);
-
- one_stepped = 0;
- }
- }
-
- CORE_ADDR
- sparc_frame_chain (thisframe)
- FRAME thisframe;
- {
- char buf[MAX_REGISTER_RAW_SIZE];
- int err;
- CORE_ADDR addr;
-
- addr = thisframe->frame + FRAME_SAVED_I0 +
- REGISTER_RAW_SIZE (FP_REGNUM) * (FP_REGNUM - I0_REGNUM);
- err = target_read_memory (addr, buf, REGISTER_RAW_SIZE (FP_REGNUM));
- if (err)
- return 0;
- return extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM));
- }
-
- CORE_ADDR
- sparc_extract_struct_value_address (regbuf)
- char regbuf[REGISTER_BYTES];
- {
- return read_memory_integer (((int *)(regbuf))[SP_REGNUM]+(16*4),
- TARGET_PTR_BIT / TARGET_CHAR_BIT);
- }
-
- /* Find the pc saved in frame FRAME. */
-
- CORE_ADDR
- sparc_frame_saved_pc (frame)
- FRAME frame;
- {
- char buf[MAX_REGISTER_RAW_SIZE];
- CORE_ADDR addr;
-
- if (frame->signal_handler_caller)
- {
- /* This is the signal trampoline frame.
- Get the saved PC from the sigcontext structure. */
-
- #ifndef SIGCONTEXT_PC_OFFSET
- #define SIGCONTEXT_PC_OFFSET 12
- #endif
-
- CORE_ADDR sigcontext_addr;
- char scbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
- int saved_pc_offset = SIGCONTEXT_PC_OFFSET;
- char *name = NULL;
-
- /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext
- as the third parameter. The offset to the saved pc is 12. */
- find_pc_partial_function (frame->pc, &name,
- (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
- if (name && STREQ (name, "ucbsigvechandler"))
- saved_pc_offset = 12;
-
- /* The sigcontext address is contained in register O2. */
- get_saved_register (buf, (int *)NULL, (CORE_ADDR *)NULL,
- frame, O0_REGNUM + 2, (enum lval_type *)NULL);
- sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM));
-
- /* Don't cause a memory_error when accessing sigcontext in case the
- stack layout has changed or the stack is corrupt. */
- target_read_memory (sigcontext_addr + saved_pc_offset,
- scbuf, sizeof (scbuf));
- return extract_address (scbuf, sizeof (scbuf));
- }
- addr = (frame->bottom + FRAME_SAVED_I0 +
- REGISTER_RAW_SIZE (I7_REGNUM) * (I7_REGNUM - I0_REGNUM));
- read_memory (addr, buf, REGISTER_RAW_SIZE (I7_REGNUM));
- return PC_ADJUST (extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM)));
- }
-
- /*
- * Since an individual frame in the frame cache is defined by two
- * arguments (a frame pointer and a stack pointer), we need two
- * arguments to get info for an arbitrary stack frame. This routine
- * takes two arguments and makes the cached frames look as if these
- * two arguments defined a frame on the cache. This allows the rest
- * of info frame to extract the important arguments without
- * difficulty.
- */
- FRAME
- setup_arbitrary_frame (argc, argv)
- int argc;
- FRAME_ADDR *argv;
- {
- FRAME fid;
-
- if (argc != 2)
- error ("Sparc frame specifications require two arguments: fp and sp");
-
- fid = create_new_frame (argv[0], 0);
-
- if (!fid)
- fatal ("internal: create_new_frame returned invalid frame id");
-
- fid->bottom = argv[1];
- fid->pc = FRAME_SAVED_PC (fid);
- return fid;
- }
-
- /* Given a pc value, skip it forward past the function prologue by
- disassembling instructions that appear to be a prologue.
-
- If FRAMELESS_P is set, we are only testing to see if the function
- is frameless. This allows a quicker answer.
-
- This routine should be more specific in its actions; making sure
- that it uses the same register in the initial prologue section. */
- CORE_ADDR
- skip_prologue (start_pc, frameless_p)
- CORE_ADDR start_pc;
- int frameless_p;
- {
- union
- {
- unsigned long int code;
- struct
- {
- unsigned int op:2;
- unsigned int rd:5;
- unsigned int op2:3;
- unsigned int imm22:22;
- } sethi;
- struct
- {
- unsigned int op:2;
- unsigned int rd:5;
- unsigned int op3:6;
- unsigned int rs1:5;
- unsigned int i:1;
- unsigned int simm13:13;
- } add;
- int i;
- } x;
- int dest = -1;
- CORE_ADDR pc = start_pc;
-
- x.i = read_memory_integer (pc, 4);
-
- /* Recognize the `sethi' insn and record its destination. */
- if (x.sethi.op == 0 && x.sethi.op2 == 4)
- {
- dest = x.sethi.rd;
- pc += 4;
- x.i = read_memory_integer (pc, 4);
- }
-
- /* Recognize an add immediate value to register to either %g1 or
- the destination register recorded above. Actually, this might
- well recognize several different arithmetic operations.
- It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
- followed by "save %sp, %g1, %sp" is a valid prologue (Not that
- I imagine any compiler really does that, however). */
- if (x.add.op == 2 && x.add.i && (x.add.rd == 1 || x.add.rd == dest))
- {
- pc += 4;
- x.i = read_memory_integer (pc, 4);
- }
-
- /* This recognizes any SAVE insn. But why do the XOR and then
- the compare? That's identical to comparing against 60 (as long
- as there isn't any sign extension). */
- if (x.add.op == 2 && (x.add.op3 ^ 32) == 28)
- {
- pc += 4;
- if (frameless_p) /* If the save is all we care about, */
- return pc; /* return before doing more work */
- x.i = read_memory_integer (pc, 4);
- }
- else
- {
- /* Without a save instruction, it's not a prologue. */
- return start_pc;
- }
-
- /* Now we need to recognize stores into the frame from the input
- registers. This recognizes all non alternate stores of input
- register, into a location offset from the frame pointer. */
- while (x.add.op == 3
- && (x.add.op3 & 0x3c) == 4 /* Store, non-alternate. */
- && (x.add.rd & 0x18) == 0x18 /* Input register. */
- && x.add.i /* Immediate mode. */
- && x.add.rs1 == 30 /* Off of frame pointer. */
- /* Into reserved stack space. */
- && x.add.simm13 >= 0x44
- && x.add.simm13 < 0x5b)
- {
- pc += 4;
- x.i = read_memory_integer (pc, 4);
- }
- return pc;
- }
-
- /* Check instruction at ADDR to see if it is an annulled branch.
- All other instructions will go to NPC or will trap.
- Set *TARGET if we find a canidate branch; set to zero if not. */
-
- branch_type
- isannulled (instruction, addr, target)
- long instruction;
- CORE_ADDR addr, *target;
- {
- branch_type val = not_branch;
- long int offset; /* Must be signed for sign-extend. */
- union
- {
- unsigned long int code;
- struct
- {
- unsigned int op:2;
- unsigned int a:1;
- unsigned int cond:4;
- unsigned int op2:3;
- unsigned int disp22:22;
- } b;
- } insn;
-
- *target = 0;
- insn.code = instruction;
-
- if (insn.b.op == 0
- && (insn.b.op2 == 2 || insn.b.op2 == 6 || insn.b.op2 == 7))
- {
- if (insn.b.cond == 8)
- val = insn.b.a ? baa : ba;
- else
- val = insn.b.a ? bicca : bicc;
- offset = 4 * ((int) (insn.b.disp22 << 10) >> 10);
- *target = addr + offset;
- }
-
- return val;
- }
-
- /* sparc_frame_find_saved_regs ()
-
- Stores, into a struct frame_saved_regs,
- the addresses of the saved registers of frame described by FRAME_INFO.
- This includes special registers such as pc and fp saved in special
- ways in the stack frame. sp is even more special:
- the address we return for it IS the sp for the next frame.
-
- Note that on register window machines, we are currently making the
- assumption that window registers are being saved somewhere in the
- frame in which they are being used. If they are stored in an
- inferior frame, find_saved_register will break.
-
- On the Sun 4, the only time all registers are saved is when
- a dummy frame is involved. Otherwise, the only saved registers
- are the LOCAL and IN registers which are saved as a result
- of the "save/restore" opcodes. This condition is determined
- by address rather than by value.
-
- The "pc" is not stored in a frame on the SPARC. (What is stored
- is a return address minus 8.) sparc_pop_frame knows how to
- deal with that. Other routines might or might not.
-
- See tm-sparc.h (PUSH_FRAME and friends) for CRITICAL information
- about how this works. */
-
- void
- sparc_frame_find_saved_regs (fi, saved_regs_addr)
- struct frame_info *fi;
- struct frame_saved_regs *saved_regs_addr;
- {
- register int regnum;
- FRAME_ADDR frame = FRAME_FP(fi);
- FRAME fid = FRAME_INFO_ID (fi);
-
- if (!fid)
- fatal ("Bad frame info struct in FRAME_FIND_SAVED_REGS");
-
- memset (saved_regs_addr, 0, sizeof (*saved_regs_addr));
-
- if (fi->pc >= (fi->bottom ? fi->bottom :
- read_register (SP_REGNUM))
- && fi->pc <= FRAME_FP(fi))
- {
- /* Dummy frame. All but the window regs are in there somewhere. */
- for (regnum = G1_REGNUM; regnum < G1_REGNUM+7; regnum++)
- saved_regs_addr->regs[regnum] =
- frame + (regnum - G0_REGNUM) * 4 - 0xa0;
- for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++)
- saved_regs_addr->regs[regnum] =
- frame + (regnum - I0_REGNUM) * 4 - 0xc0;
- for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++)
- saved_regs_addr->regs[regnum] =
- frame + (regnum - FP0_REGNUM) * 4 - 0x80;
- for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
- saved_regs_addr->regs[regnum] =
- frame + (regnum - Y_REGNUM) * 4 - 0xe0;
- frame = fi->bottom ?
- fi->bottom : read_register (SP_REGNUM);
- }
- else
- {
- /* Normal frame. Just Local and In registers */
- frame = fi->bottom ?
- fi->bottom : read_register (SP_REGNUM);
- for (regnum = L0_REGNUM; regnum < L0_REGNUM+16; regnum++)
- saved_regs_addr->regs[regnum] =
- frame + (regnum - L0_REGNUM) * REGISTER_RAW_SIZE (L0_REGNUM);
- }
- if (fi->next)
- {
- /* Pull off either the next frame pointer or the stack pointer */
- FRAME_ADDR next_next_frame =
- (fi->next->bottom ?
- fi->next->bottom :
- read_register (SP_REGNUM));
- for (regnum = O0_REGNUM; regnum < O0_REGNUM+8; regnum++)
- saved_regs_addr->regs[regnum] =
- next_next_frame + regnum * REGISTER_RAW_SIZE (O0_REGNUM);
- }
- /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
- saved_regs_addr->regs[SP_REGNUM] = FRAME_FP (fi);
- }
-
- /* Push an empty stack frame, and record in it the current PC, regs, etc.
-
- We save the non-windowed registers and the ins. The locals and outs
- are new; they don't need to be saved. The i's and l's of
- the last frame were already saved on the stack. */
-
- /* Definitely see tm-sparc.h for more doc of the frame format here. */
-
- void
- sparc_push_dummy_frame ()
- {
- CORE_ADDR sp, old_sp;
- char register_temp[0x140];
-
- old_sp = sp = read_register (SP_REGNUM);
-
- /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
- read_register_bytes (REGISTER_BYTE (Y_REGNUM), ®ister_temp[0],
- REGISTER_RAW_SIZE (Y_REGNUM) * 8);
-
- read_register_bytes (REGISTER_BYTE (O0_REGNUM), ®ister_temp[8 * 4],
- REGISTER_RAW_SIZE (O0_REGNUM) * 8);
-
- read_register_bytes (REGISTER_BYTE (G0_REGNUM), ®ister_temp[16 * 4],
- REGISTER_RAW_SIZE (G0_REGNUM) * 8);
-
- read_register_bytes (REGISTER_BYTE (FP0_REGNUM), ®ister_temp[24 * 4],
- REGISTER_RAW_SIZE (FP0_REGNUM) * 32);
-
- sp -= 0x140;
-
- write_register (SP_REGNUM, sp);
-
- write_memory (sp + 0x60, ®ister_temp[0], (8 + 8 + 8 + 32) * 4);
-
- write_register (FP_REGNUM, old_sp);
-
- /* Set return address register for the call dummy to the current PC. */
- write_register (I7_REGNUM, read_pc() - 8);
- }
-
- /* Discard from the stack the innermost frame, restoring all saved registers.
-
- Note that the values stored in fsr by get_frame_saved_regs are *in
- the context of the called frame*. What this means is that the i
- regs of fsr must be restored into the o regs of the (calling) frame that
- we pop into. We don't care about the output regs of the calling frame,
- since unless it's a dummy frame, it won't have any output regs in it.
-
- We never have to bother with %l (local) regs, since the called routine's
- locals get tossed, and the calling routine's locals are already saved
- on its stack. */
-
- /* Definitely see tm-sparc.h for more doc of the frame format here. */
-
- void
- sparc_pop_frame ()
- {
- register FRAME frame = get_current_frame ();
- register CORE_ADDR pc;
- struct frame_saved_regs fsr;
- struct frame_info *fi;
- char raw_buffer[REGISTER_BYTES];
-
- fi = get_frame_info (frame);
- get_frame_saved_regs (fi, &fsr);
- if (fsr.regs[FP0_REGNUM])
- {
- read_memory (fsr.regs[FP0_REGNUM], raw_buffer, 32 * 4);
- write_register_bytes (REGISTER_BYTE (FP0_REGNUM), raw_buffer, 32 * 4);
- }
- if (fsr.regs[FPS_REGNUM])
- {
- read_memory (fsr.regs[FPS_REGNUM], raw_buffer, 4);
- write_register_bytes (REGISTER_BYTE (FPS_REGNUM), raw_buffer, 4);
- }
- if (fsr.regs[CPS_REGNUM])
- {
- read_memory (fsr.regs[CPS_REGNUM], raw_buffer, 4);
- write_register_bytes (REGISTER_BYTE (CPS_REGNUM), raw_buffer, 4);
- }
- if (fsr.regs[G1_REGNUM])
- {
- read_memory (fsr.regs[G1_REGNUM], raw_buffer, 7 * 4);
- write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer, 7 * 4);
- }
- if (fsr.regs[I0_REGNUM])
- {
- CORE_ADDR sp;
-
- char reg_temp[REGISTER_BYTES];
-
- read_memory (fsr.regs[I0_REGNUM], raw_buffer, 8 * 4);
-
- /* Get the ins and locals which we are about to restore. Just
- moving the stack pointer is all that is really needed, except
- store_inferior_registers is then going to write the ins and
- locals from the registers array, so we need to muck with the
- registers array. */
- sp = fsr.regs[SP_REGNUM];
- read_memory (sp, reg_temp, REGISTER_RAW_SIZE (L0_REGNUM) * 16);
-
- /* Restore the out registers.
- Among other things this writes the new stack pointer. */
- write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
- REGISTER_RAW_SIZE (O0_REGNUM) * 8);
-
- write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
- REGISTER_RAW_SIZE (L0_REGNUM) * 16);
- }
- if (fsr.regs[PS_REGNUM])
- write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4));
- if (fsr.regs[Y_REGNUM])
- write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], 4));
- if (fsr.regs[PC_REGNUM])
- {
- /* Explicitly specified PC (and maybe NPC) -- just restore them. */
- write_register (PC_REGNUM, read_memory_integer (fsr.regs[PC_REGNUM], 4));
- if (fsr.regs[NPC_REGNUM])
- write_register (NPC_REGNUM,
- read_memory_integer (fsr.regs[NPC_REGNUM], 4));
- }
- else if (fsr.regs[I7_REGNUM])
- {
- /* Return address in %i7 -- adjust it, then restore PC and NPC from it */
- pc = PC_ADJUST (read_memory_integer (fsr.regs[I7_REGNUM], 4));
- write_register (PC_REGNUM, pc);
- write_register (NPC_REGNUM, pc + 4);
- }
- flush_cached_frames ();
- set_current_frame ( create_new_frame (read_register (FP_REGNUM),
- read_pc ()));
- }
-
- /* On the Sun 4 under SunOS, the compile will leave a fake insn which
- encodes the structure size being returned. If we detect such
- a fake insn, step past it. */
-
- CORE_ADDR
- sparc_pc_adjust(pc)
- CORE_ADDR pc;
- {
- unsigned long insn;
- char buf[4];
- int err;
-
- err = target_read_memory (pc + 8, buf, sizeof(long));
- insn = extract_unsigned_integer (buf, 4);
- if ((err == 0) && (insn & 0xfffffe00) == 0)
- return pc+12;
- else
- return pc+8;
- }
-
- #ifdef USE_PROC_FS /* Target dependent support for /proc */
-
- /* The /proc interface divides the target machine's register set up into
- two different sets, the general register set (gregset) and the floating
- point register set (fpregset). For each set, there is an ioctl to get
- the current register set and another ioctl to set the current values.
-
- The actual structure passed through the ioctl interface is, of course,
- naturally machine dependent, and is different for each set of registers.
- For the sparc for example, the general register set is typically defined
- by:
-
- typedef int gregset_t[38];
-
- #define R_G0 0
- ...
- #define R_TBR 37
-
- and the floating point set by:
-
- typedef struct prfpregset {
- union {
- u_long pr_regs[32];
- double pr_dregs[16];
- } pr_fr;
- void * pr_filler;
- u_long pr_fsr;
- u_char pr_qcnt;
- u_char pr_q_entrysize;
- u_char pr_en;
- u_long pr_q[64];
- } prfpregset_t;
-
- These routines provide the packing and unpacking of gregset_t and
- fpregset_t formatted data.
-
- */
-
-
- /* Given a pointer to a general register set in /proc format (gregset_t *),
- unpack the register contents and supply them as gdb's idea of the current
- register values. */
-
- void
- supply_gregset (gregsetp)
- prgregset_t *gregsetp;
- {
- register int regi;
- register prgreg_t *regp = (prgreg_t *) gregsetp;
-
- /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
- for (regi = G0_REGNUM ; regi <= I7_REGNUM ; regi++)
- {
- supply_register (regi, (char *) (regp + regi));
- }
-
- /* These require a bit more care. */
- supply_register (PS_REGNUM, (char *) (regp + R_PS));
- supply_register (PC_REGNUM, (char *) (regp + R_PC));
- supply_register (NPC_REGNUM,(char *) (regp + R_nPC));
- supply_register (Y_REGNUM, (char *) (regp + R_Y));
- }
-
- void
- fill_gregset (gregsetp, regno)
- prgregset_t *gregsetp;
- int regno;
- {
- int regi;
- register prgreg_t *regp = (prgreg_t *) gregsetp;
- extern char registers[];
-
- for (regi = 0 ; regi <= R_I7 ; regi++)
- {
- if ((regno == -1) || (regno == regi))
- {
- *(regp + regi) = *(int *) ®isters[REGISTER_BYTE (regi)];
- }
- }
- if ((regno == -1) || (regno == PS_REGNUM))
- {
- *(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)];
- }
- if ((regno == -1) || (regno == PC_REGNUM))
- {
- *(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)];
- }
- if ((regno == -1) || (regno == NPC_REGNUM))
- {
- *(regp + R_nPC) = *(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)];
- }
- if ((regno == -1) || (regno == Y_REGNUM))
- {
- *(regp + R_Y) = *(int *) ®isters[REGISTER_BYTE (Y_REGNUM)];
- }
- }
-
- #if defined (FP0_REGNUM)
-
- /* Given a pointer to a floating point register set in /proc format
- (fpregset_t *), unpack the register contents and supply them as gdb's
- idea of the current floating point register values. */
-
- void
- supply_fpregset (fpregsetp)
- prfpregset_t *fpregsetp;
- {
- register int regi;
- char *from;
-
- for (regi = FP0_REGNUM ; regi < FP0_REGNUM+32 ; regi++)
- {
- from = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
- supply_register (regi, from);
- }
- supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
- }
-
- /* Given a pointer to a floating point register set in /proc format
- (fpregset_t *), update the register specified by REGNO from gdb's idea
- of the current floating point register set. If REGNO is -1, update
- them all. */
-
- void
- fill_fpregset (fpregsetp, regno)
- prfpregset_t *fpregsetp;
- int regno;
- {
- int regi;
- char *to;
- char *from;
- extern char registers[];
-
- for (regi = FP0_REGNUM ; regi < FP0_REGNUM+32 ; regi++)
- {
- if ((regno == -1) || (regno == regi))
- {
- from = (char *) ®isters[REGISTER_BYTE (regi)];
- to = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
- memcpy (to, from, REGISTER_RAW_SIZE (regi));
- }
- }
- if ((regno == -1) || (regno == FPS_REGNUM))
- {
- fpregsetp->pr_fsr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)];
- }
- }
-
- #endif /* defined (FP0_REGNUM) */
-
- #endif /* USE_PROC_FS */
-
-
- #ifdef GET_LONGJMP_TARGET
-
- /* Figure out where the longjmp will land. We expect that we have just entered
- longjmp and haven't yet setup the stack frame, so the args are still in the
- output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
- extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
- This routine returns true on success */
-
- int
- get_longjmp_target(pc)
- CORE_ADDR *pc;
- {
- CORE_ADDR jb_addr;
- #define LONGJMP_TARGET_SIZE 4
- char buf[LONGJMP_TARGET_SIZE];
-
- jb_addr = read_register(O0_REGNUM);
-
- if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
- LONGJMP_TARGET_SIZE))
- return 0;
-
- *pc = extract_address (buf, LONGJMP_TARGET_SIZE);
-
- return 1;
- }
- #endif /* GET_LONGJMP_TARGET */
-