home *** CD-ROM | disk | FTP | other *** search
- ;;;"fft.scm" Fast Fourier Transform
- ;Copyright (C) 1999 Aubrey Jaffer
- ;
- ;Permission to copy this software, to redistribute it, and to use it
- ;for any purpose is granted, subject to the following restrictions and
- ;understandings.
- ;
- ;1. Any copy made of this software must include this copyright notice
- ;in full.
- ;
- ;2. I have made no warrantee or representation that the operation of
- ;this software will be error-free, and I am under no obligation to
- ;provide any services, by way of maintenance, update, or otherwise.
- ;
- ;3. In conjunction with products arising from the use of this
- ;material, there shall be no use of my name in any advertising,
- ;promotional, or sales literature without prior written consent in
- ;each case.
-
- ;;;; See:
- ;;; Introduction to Algorithms (MIT Electrical
- ;;; Engineering and Computer Science Series)
- ;;; by Thomas H. Cormen, Charles E. Leiserson (Contributor),
- ;;; Ronald L. Rivest (Contributor)
- ;;; MIT Press; ISBN: 0-262-03141-8 (July 1990)
-
- ;;; http://www.astro.virginia.edu/~eww6n/math/DiscreteFourierTransform.html
- ;;; differs in the direction of rotation of the complex unit vectors.
-
- (require 'array)
-
- (define (fft:shuffled&scaled ara n scale)
- (define lgn (integer-length (+ -1 n)))
- (define new (apply make-array 0 (array-dimensions ara)))
- (define bit-reverse (lambda (width in)
- (if (zero? width) 0
- (+ (bit-reverse (+ -1 width) (quotient in 2))
- (ash (modulo in 2) (+ -1 width))))))
- (if (not (eqv? n (expt 2 lgn)))
- (slib:error 'fft "array length not power of 2" n))
- (do ((k 0 (+ 1 k)))
- ((>= k n) new)
- (array-set! new (* (array-ref ara k) scale) (bit-reverse lgn k))))
-
- (define (dft! ara n dir)
- (define lgn (integer-length (+ -1 n)))
- (define pi2i (* 0+8i (atan 1)))
- (do ((s 1 (+ 1 s)))
- ((> s lgn) ara)
- (let* ((m (expt 2 s))
- (w_m (exp (* dir (/ pi2i m))))
- (m/2-1 (+ (quotient m 2) -1)))
- (do ((j 0 (+ 1 j))
- (w 1 (* w w_m)))
- ((> j m/2-1))
- (do ((k j (+ m k)))
- ((>= k n))
- (let* ((k+m/2 (+ k m/2-1 1))
- (t (* w (array-ref ara k+m/2)))
- (u (array-ref ara k)))
- (array-set! ara (+ u t) k)
- (array-set! ara (- u t) k+m/2)))))))
-
- (define (fft ara)
- (define n (car (array-dimensions ara)))
- (dft! (fft:shuffled&scaled ara n 1) n 1))
-
- (define (fft-1 ara)
- (define n (car (array-dimensions ara)))
- (dft! (fft:shuffled&scaled ara n (/ n)) n -1))
-