home *** CD-ROM | disk | FTP | other *** search
- ;;;; "factor.scm" factorization, prime test and generation
- ;;; Copyright (C) 1991, 1992, 1993, 1998 Aubrey Jaffer.
- ;
- ;Permission to copy this software, to redistribute it, and to use it
- ;for any purpose is granted, subject to the following restrictions and
- ;understandings.
- ;
- ;1. Any copy made of this software must include this copyright notice
- ;in full.
- ;
- ;2. I have made no warrantee or representation that the operation of
- ;this software will be error-free, and I am under no obligation to
- ;provide any services, by way of maintenance, update, or otherwise.
- ;
- ;3. In conjunction with products arising from the use of this
- ;material, there shall be no use of my name in any advertising,
- ;promotional, or sales literature without prior written consent in
- ;each case.
-
- (require 'common-list-functions)
- (require 'modular)
- (require 'random)
- (require 'byte)
-
- ;;@body
- ;;@0 is the random-state (@pxref{Random Numbers}) used by these
- ;;procedures. If you call these procedures from more than one thread
- ;;(or from interrupt), @code{random} may complain about reentrant
- ;;calls.
- (define prime:prngs
- (make-random-state "repeatable seed for primes"))
-
-
- ;;@emph{Note:} The prime test and generation procedures implement (or
- ;;use) the Solovay-Strassen primality test. See
- ;;
- ;;@itemize @bullet
- ;;@item Robert Solovay and Volker Strassen,
- ;;@cite{A Fast Monte-Carlo Test for Primality},
- ;;SIAM Journal on Computing, 1977, pp 84-85.
- ;;@end itemize
-
- ;;; Solovay-Strassen Prime Test
- ;;; if n is prime, then J(a,n) is congruent mod n to a**((n-1)/2)
-
- ;;; (modulo p 16) is because we care only about the low order bits.
- ;;; The odd? tests are inline of (expt -1 ...)
-
- (define (prime:jacobi-symbol p q)
- (cond ((zero? p) 0)
- ((= 1 p) 1)
- ((odd? p)
- (if (odd? (quotient (* (- (modulo p 16) 1) (- q 1)) 4))
- (- (prime:jacobi-symbol (modulo q p) p))
- (prime:jacobi-symbol (modulo q p) p)))
- (else
- (let ((qq (modulo q 16)))
- (if (odd? (quotient (- (* qq qq) 1) 8))
- (- (prime:jacobi-symbol (quotient p 2) q))
- (prime:jacobi-symbol (quotient p 2) q))))))
- ;;@args p q
- ;;Returns the value (+1, @minus{}1, or 0) of the Jacobi-Symbol of
- ;;exact non-negative integer @1 and exact positive odd integer @2.
- (define jacobi-symbol prime:jacobi-symbol)
-
- ;;@body
- ;;@0 the maxinum number of iterations of Solovay-Strassen that will
- ;;be done to test a number for primality.
- (define prime:trials 30)
-
- ;;; checks if n is prime. Returns #f if not prime. #t if (probably) prime.
- ;;; probability of a mistake = (expt 2 (- prime:trials))
- ;;; choosing prime:trials=30 should be enough
- (define (Solovay-Strassen-prime? n)
- (do ((i prime:trials (- i 1))
- (a (+ 2 (random (- n 2) prime:prngs))
- (+ 2 (random (- n 2) prime:prngs))))
- ((not (and (positive? i)
- (= (gcd a n) 1)
- (= (modulo (prime:jacobi-symbol a n) n)
- (modular:expt n a (quotient (- n 1) 2)))))
- (if (positive? i) #f #t))))
-
- ;;; prime:products are products of small primes.
- (define (primes-gcd? n comps)
- (comlist:notevery (lambda (prd) (= 1 (gcd n prd))) comps))
- (define prime:prime-sqr 121)
- (define prime:products '(105))
- (define prime:sieve (bytes 0 0 1 1 0 1 0 1 0 0 0))
- (letrec ((lp (lambda (comp comps primes nexp)
- (cond ((< comp (quotient most-positive-fixnum nexp))
- (let ((ncomp (* nexp comp)))
- (lp ncomp comps
- (cons nexp primes)
- (next-prime nexp (cons ncomp comps)))))
- ((< (quotient comp nexp) (* nexp nexp))
- (set! prime:prime-sqr (* nexp nexp))
- (set! prime:sieve (make-bytes nexp 0))
- (for-each (lambda (prime)
- (byte-set! prime:sieve prime 1))
- primes)
- (set! prime:products (reverse (cons comp comps))))
- (else
- (lp nexp (cons comp comps)
- (cons nexp primes)
- (next-prime nexp (cons comp comps)))))))
- (next-prime (lambda (nexp comps)
- (set! comps (reverse comps))
- (do ((nexp (+ 2 nexp) (+ 2 nexp)))
- ((not (primes-gcd? nexp comps)) nexp)))))
- (lp 3 '() '(2 3) 5))
-
- (define (prime:prime? n)
- (set! n (abs n))
- (cond ((< n (bytes-length prime:sieve)) (positive? (byte-ref prime:sieve n)))
- ((even? n) #f)
- ((primes-gcd? n prime:products) #f)
- ((< n prime:prime-sqr) #t)
- (else (Solovay-Strassen-prime? n))))
- ;;@args n
- ;;Returns @code{#f} if @1 is composite; @code{#t} if @1 is prime.
- ;;There is a slight chance @code{(expt 2 (- prime:trials))} that a
- ;;composite will return @code{#t}.
- (define prime? prime:prime?)
- (define probably-prime? prime:prime?) ;legacy
-
- (define (prime:prime< start)
- (do ((nbr (+ -1 start) (+ -1 nbr)))
- ((or (negative? nbr) (prime:prime? nbr))
- (if (negative? nbr) #f nbr))))
-
- (define (prime:primes< start count)
- (do ((cnt (+ -2 count) (+ -1 cnt))
- (lst '() (cons prime lst))
- (prime (prime:prime< start) (prime:prime< prime)))
- ((or (not prime) (negative? cnt))
- (if prime (cons prime lst) lst))))
- ;;@args start count
- ;;Returns a list of the first @2 prime numbers less than
- ;;@1. If there are fewer than @var{count} prime numbers
- ;;less than @var{start}, then the returned list will have fewer than
- ;;@var{start} elements.
- (define primes< prime:primes<)
-
- (define (prime:prime> start)
- (do ((nbr (+ 1 start) (+ 1 nbr)))
- ((prime:prime? nbr) nbr)))
-
- (define (prime:primes> start count)
- (set! start (max 0 start))
- (do ((cnt (+ -2 count) (+ -1 cnt))
- (lst '() (cons prime lst))
- (prime (prime:prime> start) (prime:prime> prime)))
- ((negative? cnt)
- (reverse (cons prime lst)))))
- ;;@args start count
- ;;Returns a list of the first @2 prime numbers greater than @1.
- (define primes> prime:primes>)
-
- ;;;;Lankinen's recursive factoring algorithm:
- ;From: ld231782@longs.LANCE.ColoState.EDU (L. Detweiler)
-
- ; | undefined if n<0,
- ; | (u,v) if n=0,
- ;Let f(u,v,b,n) := | [otherwise]
- ; | f(u+b,v,2b,(n-v)/2) or f(u,v+b,2b,(n-u)/2) if n odd
- ; | f(u,v,2b,n/2) or f(u+b,v+b,2b,(n-u-v-b)/2) if n even
-
- ;Thm: f(1,1,2,(m-1)/2) = (p,q) iff pq=m for odd m.
-
- ;It may be illuminating to consider the relation of the Lankinen function in
- ;a `computational hierarchy' of other factoring functions.* Assumptions are
- ;made herein on the basis of conventional digital (binary) computers. Also,
- ;complexity orders are given for the worst case scenarios (when the number to
- ;be factored is prime). However, all algorithms would probably perform to
- ;the same constant multiple of the given orders for complete composite
- ;factorizations.
-
- ;Thm: Eratosthenes' Sieve is very roughtly O(ln(n)/n) in time and
- ; O(n*log2(n)) in space.
- ;Pf: It works with all prime factors less than n (about ln(n)/n by the prime
- ; number thm), requiring an array of size proportional to n with log2(n)
- ; space for each entry.
-
- ;Thm: `Odd factors' is O((sqrt(n)/2)*log2(n)) in time and O(log2(n)) in
- ; space.
- ;Pf: It tests all odd factors less than the square root of n (about
- ; sqrt(n)/2), with log2(n) time for each division. It requires only
- ; log2(n) space for the number and divisors.
-
- ;Thm: Lankinen's algorithm is O(sqrt(n)/2) in time and O((sqrt(n)/2)*log2(n))
- ; in space.
- ;Pf: The algorithm is easily modified to seach only for factors p<q for all
- ; pq=m. Then the recursive call tree forms a geometric progression
- ; starting at one, and doubling until reaching sqrt(n)/2, or a length of
- ; log2(sqrt(n)/2). From the formula for a geometric progression, there is
- ; a total of about 2^log2(sqrt(n)/2) = sqrt(n)/2 calls. Assuming that
- ; addition, subtraction, comparison, and multiplication/division by two
- ; occur in constant time, this implies O(sqrt(n)/2) time and a
- ; O((sqrt(n)/2)*log2(n)) requirement of stack space.
-
- (define (prime:f u v b n)
- (if (<= n 0)
- (cond ((negative? n) #f)
- ((= u 1) #f)
- ((= v 1) #f)
- ; Do both of these factors need to be factored?
- (else (append (or (prime:f 1 1 2 (quotient (- u 1) 2))
- (list u))
- (or (prime:f 1 1 2 (quotient (- v 1) 2))
- (list v)))))
- (if (even? n)
- (or (prime:f u v (+ b b) (quotient n 2))
- (prime:f (+ u b) (+ v b) (+ b b) (quotient (- n (+ u v b)) 2)))
- (or (prime:f (+ u b) v (+ b b) (quotient (- n v) 2))
- (prime:f u (+ v b) (+ b b) (quotient (- n u) 2))))))
-
- (define (prime:fo m)
- (let* ((s (gcd m (car prime:products)))
- (r (quotient m s)))
- (if (= 1 s)
- (or (prime:f 1 1 2 (quotient (- m 1) 2)) (list m))
- (append
- (if (= 1 r) '()
- (or (prime:f 1 1 2 (quotient (- r 1) 2)) (list r)))
- (or (prime:f 1 1 2 (quotient (- s 1) 2)) (list s))))))
-
- (define (prime:fe m)
- (if (even? m)
- (cons 2 (prime:fe (quotient m 2)))
- (if (eqv? 1 m)
- '()
- (prime:fo m))))
-
- (define (prime:factor k)
- (case k
- ((-1 0 1) (list k))
- (else (if (negative? k)
- (cons -1 (prime:fe (- k)))
- (prime:fe k)))))
- ;;@args k
- ;;Returns a list of the prime factors of @1. The order of the
- ;;factors is unspecified. In order to obtain a sorted list do
- ;;@code{(sort! (factor @var{k}) <)}.
- (define factor prime:factor)
-