home *** CD-ROM | disk | FTP | other *** search
-
- /* This file is to be run by the EXAMPLE command, and may not
- otherwise work.
- The following are either acceptable lines to maxima, or they are
- two successive '&' characters immediately following a '$' or ';'
- and then followed by the name of the section of examples, and then followed by
- a sequence of maxima forms.
- */
- &&
- ADDITIVE DECLARE(F,ADDITIVE);
- F(2*A+3*B);&&
- ALGSYS F1:2*X*(1-L1)-2*(X-1)*L2$
- F2:L2-L1$
- F3:L1*(1-X**2-Y)$
- F4:L2*(Y-(X-1)**2)$
- ALGSYS([F1,F2,F3,F4],[X,Y,L1,L2]);
- F1:X**2-Y**2$
- F2:X**2-X+2*Y**2-Y-1$
- ALGSYS([F1,F2],[X,Y]);&&
- ALLROOTS (2*X+1)^3=13.5*(X^5+1);
- ALLROOTS(%);&&
- ANTISYMMETRIC DECLARE(H,ANTISYMMETRIC);
- H(X,Z,Y);&&
- APPEND APPEND([Y+X,0,-3.2],[2.5E20,X]);&&
- ARRAYINFO B[1,X]:1$
- ARRAY(F,2,3);
- ARRAYINFO(B);
- ARRAYINFO(F);&&
- ARRAYS A[N]:=N*A[N-1];
- A[0]:1$
- A[5];
- A[N]:=N$
- A[6];
- A[4];&&
- AT ATVALUE(F(X,Y),[X=0,Y=1],A^2);
- ATVALUE('DIFF(F(X,Y),X),X=0,Y+1);
- PRINTPROPS(ALL,ATVALUE);
- DIFF(4*F(X,Y)^2-U(X,Y)^2,X);
- AT(%,[X=0,Y=1]);&&
- ATVALUE
- kill(f,x,a,u,g);
- ATVALUE(F(X,Y),[X=0,Y=1],A^2)$
- ATVALUE('DIFF(F(X,Y),X),X=0,Y+1);
- PRINTPROPS(ALL,ATVALUE);
- DIFF(4*F(X,Y)^2-U(X,Y)^2,X);
- AT(%,[X=0,Y=1]);&&
- AUGCOEFMATRIX [2*X-(A-1)*Y=5*B,A*X+B*Y+C=0]$
- AUGCOEFMATRIX(%,[X,Y]);&&
- BEZOUT BEZOUT(A*Y+X^2+1,Y^2+X*Y+B,X);
- EXPAND(DETERMINANT(%));
- %-EXPAND(RESULTANT(A*Y+X^2+1,Y^2+X*Y+B,X));&&
- BLOCK
- kill(f);
- HESSIAN(F):=BLOCK([DFXX,DFXY,DFXZ,DFYY,DFYZ,DFZZ],
- DFXX:DIFF(F,X,2),DFXY:DIFF(F,X,1,Y,1),
- DFXZ:DIFF(F,X,1,Z,1),DFYY:DIFF(F,Y,2),
- DFYZ:DIFF(F,Y,1,Z,1),DFZZ:DIFF(F,Z,2),
- DETERMINANT(MATRIX([DFXX,DFXY,DFXZ],[DFXY,DFYY,DFYZ],
- [DFXZ,DFYZ,DFZZ])))$
- kill(x,y,z);
- HESSIAN(X^3-3*A*X*Y*Z+Y^3);
- SUBST(1,Z,QUOTIENT(%,-54*A^2));
- F(X):=BLOCK([Y,use_fast_arrays:FALSE], LOCAL(A), Y:4, A[Y]:X, DISPLAY(A[Y]))$
- Y:2$
- A[Y+2]:0$
- F(9);
- Ff(X):=BLOCK([Y,A,use_fast_arrays:true], Y:4, A[Y]:X, DISPLAY(A[Y]))$
- Ff(10);
- A[Y+2];&&
- BOTHCOEFF ISLINEAR(EXP,VAR):=BLOCK([C],
- C:BOTHCOEF(RAT(EXP,VAR),VAR),
- IS(FREEOF(VAR,C) AND C[1]#0))$
- ISLINEAR((R^2-(X-R)^2)/X,X);&&
- CATCH G(L):=CATCH(MAP(LAMBDA([X],IF X<0 THEN THROW(X) ELSE F(X)),L))$
- G([1,2,3,7]);
- G([1,2,-3,7]);&&
- CF CF([1,2,-3]+[1,-2,1]);
- CFDISREP(%);
- CFLENGTH:4$
- CF(SQRT(3));
- CFEXPAND(%);
- EV(%[1,2]/%[2,2],NUMER);&&
- CFDISREP CF([1,2,-3]+[1,-2,1]);
- CFDISREP(%);&&
- CFEXPAND CFLENGTH:4$
- CF(SQRT(3));
- CFEXPAND(%);
- EV(%[1,2]/%[2,2],NUMER);&&
- CHANGEVAR 'INTEGRATE(%E^(SQRT(A)*SQRT(Y)),Y,0,4);
- CHANGEVAR(%,Y-Z^2/A,Z,Y);&&
- CHARPOLY A:MATRIX([3,1],[2,4]);
- EXPAND(CHARPOLY(A,LAMBDA));
- (PROGRAMMODE:TRUE,SOLVE(%));
- MATRIX([X1],[X2]);
- EV(A.%-LAMBDA*%,%TH(2)[1]);
- %[1,1]=0;
- X1^2+X2^2=1;
- SOLVE([%TH(2),%],[X1,X2]);&&
- COEFF COEFF(2*A*TAN(X)+TAN(X)+B=5*TAN(X)+3,TAN(X));
- COEFF(Y+X*%E^X+1,X,0);&&
- COMBINE COMBINE(A/X+B/X+A/Y+B/Y);&&
- COMMUTATIVE DECLARE(H,COMMUTATIVE);
- H(X,Z,Y);&&
- COMPLEX (SQRT(-4)+SQRT(2.25))^2;
- EXPAND(%);
- EXPAND(SQRT(2*%I));&&
- CONTENT CONTENT(2*X*Y+4*X^2*Y^2,Y);&&
- DEFMATCH NONZEROANDFREEOF(X,E):=IS(E#0 AND FREEOF(X,E));
- MATCHDECLARE(A,NONZEROANDFREEOF(X),B,FREEOF(X));
- DEFMATCH(LINEAR,A*X+B,X);
- LINEAR(3*Z+(Y+1)*Z+Y**2,Z);
- MATCHDECLARE([A,F],TRUE);
- CONSTINTERVAL(L,H):=CONSTANTP(H-L)$
- MATCHDECLARE(B,CONSTINTERVAL(A))$
- MATCHDECLARE(X,ATOM)$
- BLOCK(REMOVE(INTEGRATE,OUTATIVE),
- DEFMATCH(CHECKLIMITS,'INTEGRATE(F,X,A,B)),
- DECLARE(INTEGRATE,OUTATIVE))$
- 'INTEGRATE(SIN(T),T,X+%PI,X+2*%PI)$
- CHECKLIMITS(%);
- 'INTEGRATE(SIN(T),T,0,X)$
- CHECKLIMITS(%);
- REMVALUE(A,B,F,X)$&&
- DEFTAYLOR DEFTAYLOR(F(X),X^2+SUM(X^I/(2^I*I!^2),I,4,INF));
- TAYLOR(%E^SQRT(F(X)),X,0,4);&&
- DELETE DELETE(SIN(X),X+SIN(X)+Y);&&
- DEPENDS
- kill(a,x,f,y,t);
- DEPENDS(A,X);
- DIFF(A.A,X);
- DEPENDS(F,[X,Y],[X,Y],T);
- DIFF(F,T);&&
- DERIVDEGREE 'DIFF(Y,X,2)+'DIFF(Y,Z,3)*2+'DIFF(Y,X)*X^2;
- DERIVDEGREE(%,Y,X);&&
- DESOLVE EQN1:'DIFF(F(X),X)='DIFF(G(X),X)+SIN(X);
- EQN2:'DIFF(G(X),X,2)='DIFF(F(X),X)-COS(X);
- ATVALUE('DIFF(G(X),X),X=0,A);
- ATVALUE(F(X),X=0,1);
- DESOLVE([EQN1,EQN2],[F(X),G(X)]);
- /* VERIFICATION */
- [EQN1,EQN2],%,DIFF;&&
- DIFF kill(f,g,h,x,y);
- DIFF(SIN(X)+X^3+2*X^2,X);
- DIFF(SIN(X)*COS(X),X);
- DIFF(SIN(X)*COS(X),X,2);
- DERIVABBREV:TRUE$
- DIFF(EXP(F(X)),X,2);
- 'INTEGRATE(F(X,Y),Y,G(X),H(X));
- DIFF(%,X);&&
- DISPLAY DISPLAY(B[1,2]);&&
- DIVIDE DIVIDE(X+Y,X-Y,X);
- DIVIDE(X+Y,X-Y);&&
- DO FOR A:-3 THRU 26 STEP 7 DO LDISPLAY(A)$
- S:0$
- FOR I:1 WHILE I<=10 DO S:S+I;
- S;
- SERIES:1$
- TERM:EXP(SIN(X))$
- FOR P:1 UNLESS P>7 DO
- (TERM:DIFF(TERM,X)/P,
- SERIES:SERIES+SUBST(X=0,TERM)*X^P)$
- SERIES;
- POLY:0$
- FOR I:1 THRU 5 DO
- FOR J:I STEP -1 THRU 1 DO
- POLY:POLY+I*X^J$
- POLY;
- GUESS:-3.0$
- FOR I THRU 10 DO (GUESS:SUBST(GUESS,X,0.5*(X+10/X)),
- IF ABS(GUESS^2-10)<0.00005 THEN RETURN(GUESS));
- FOR COUNT:2 NEXT 3*COUNT THRU 20
- DO LDISPLAY(COUNT)$
- X:1000;
- THRU 10 WHILE X#0 DO X:0.5*(X+5/X)$
- X;
- REMVALUE(X);
- NEWTON(F,GUESS):=BLOCK([NUMER,Y],local(f,df,x,guess),
- NUMER:TRUE,
- DEFINE(DF(X),DIFF(F(X),X)),
- DO (Y:DF(GUESS), IF Y=0 THEN ERROR(
- "derivative at",GUESS,"is zero"),
- GUESS:GUESS-F(GUESS)/Y,
- IF ABS(F(GUESS))<5.0E-6 THEN RETURN(GUESS)))$
- SQR(X):=X^2-5.0$
- NEWTON(SQR,1000);
- FOR F IN [LOG, RHO, ATAN] DO LDISP(F(1.0))$
- EV(CONCAT(E,LINENUM-1),NUMER);&&
- DOTSCRULES DECLARE(L,SCALAR,[M1,M2,M3],NONSCALAR);
- EXPAND((1-L*M1).(1-L*M2).(1-L*M3));
- %,DOTSCRULES;
- RAT(%,L);&&
- DPART DPART(X+Y/Z^2,1,2,1);
- EXPAND((B+A)^4);
- (B+A)^2*(Y+X)^2;
- EXPAND(%);
- %TH(3)/%;
- FACTOR(%);
- DPART(%TH(2),2,4);
- PART(%TH(3),2,4);&&
- ECHELON MATRIX([2,1-A,-5*B],[A,B,C]);
- ECHELON(%);&&
- ELIMINATE EXP1:2*X^2+Y*X+Z;
- EXP2:3*X+5*Y-Z-1;
- EXP3:Z^2+X-Y^2+5;
- ELIMINATE([EXP3,EXP2,EXP1],[Y,Z]);&&
- ENTERMATRIX ENTERMATRIX(2,1);&&
- EQUATIONS X+1=Y^2;
- X-1=2*Y+1$
- %TH(2)+%;
- %TH(3)/Y;
- 1/%;&&
- EV
- kill(y,x,w);
- SIN(X)+COS(Y)+(W+1)^2+'DIFF(SIN(W),W);
- EV(%,SIN,EXPAND,DIFF,X=2,Y=1);
- EV(X+Y,X:A+Y,Y:2);
- 'DIFF(Y^2+X*Y+X^2,X,2,Y,1);
-
- EV(%,DIFF);
- 2*X-3*Y=3$
- -3*X+2*Y=-4$
- SOLVE([%TH(2),%]);
- EV(%TH(3),%);
- X+1/X>GAMMA(1/2);
- EV(%,NUMER,X=1/2);
- EV(%,PRED);&&
- EVALUATION DIFF(X*F(X),X);
- F(X):=SIN(X)$
- EV(%TH(2),DIFF);
- X;
- X:3$
- X;
- 'X;
- F(X):=X^2;
- 'F(2);
- EV(%,F);
- '(F(2));
- ''%;
- SUM(I!,I,1,4);
- 'SUM(I!,I,1,4);
- REMVALUE(X);
- 'INTEGRATE(F(X),X,A,B);
- FOR I THRU 5 DO S:S+I^2;
- S;
- EV(%,S:0);
- EV(%TH(2));
- 'SUM(G(I),I,0,N);
- Z*%E^Z;
- EV(%,Z:X^2);
- SUBST(X^2,Z,%TH(3));
- A:%;
- A+1;
- KILL(A,y);
- A;
- /* DECLARE(INTEGRATE,NOUN)$ */
- INTEGRATE(Y^2,Y);
- ''INTEGRATE(Y^2,Y);
- F(Y):=DIFF(Y*LOG(Y),Y,2);
- F(Y):=''(DIFF(Y*LOG(Y),Y,2));
- ''(CONCAT(C,LINENUM-1));
- (X+Y)^3$
- DIFF(%,X);
- Y:X^2+1$
- ''(CONCAT(C,LINENUM-2));&&
- EVENFUN DECLARE(G,EVENFUN);
- G(-X);&&
- EXP EV(%E^X*SIN(X)^2,EXPONENTIALIZE);
- kill(x);
- INTEGRATE(%,X);
- EV(%,DEMOIVRE);
- ANS:EV(%,RATEXPAND);
- EV(%,X:1,NUMER)-EV(%,X:0,NUMER);
- INTEGRATE(%E^X*SIN(X)^2,X);
- TRIGREDUCE(%);
- %-ANS;
- EV(SIN(X),%EMODE);&&
- EXPAND (1/(X+Y)^4-3/(Y+Z)^3)^2;
- EXPAND(%,2,0);
- EXPAND(A.(B+C.(D+E)+F));
- EXPAND((X+1)^3);
- (X+1)^7;
- EXPAND(%);
- EXPAND(%TH(2),7,7);
- EV(A*(B+C)+A*(B+C)^2,EXPOP:1);&&
- FACTCOMB (N+1)^2*N!^2;
- FACTCOMB(%);&&
- FACTOR FACTOR(2^63-1);
- FACTOR(Z^2*(X+2*Y)-4*X-8*Y);
- X^2*Y^2+2*X*Y^2+Y^2-X^2-2*X-1;
- BLOCK([DONTFACTOR:[X]],FACTOR(%/36/(Y^2+2*Y+1)));
- FACTOR(%E^(3*X)+1);
- FACTOR(X^4+1,A^2-2);
- FACTOR(X^3+X^2*Y^2-X*Z^2-Y^2*Z^2);
- (X+2)/(X+3)/(X+B)/(X+C)^2;
- RATSIMP(%);
- PARTFRAC(%,X);
- MAP('FACTOR,%);
- RATSIMP((X^5-1)/(X-1));
- SUBST(A,X,%);
- FACTOR(%TH(2),%);
- FACTOR(X^12+1);
- FACTOR(X^99+1);&&
- FACTORSUM EV((X+1)*((U+V)^2+A*(W+Z)^2),EXPAND);
- FACTORSUM(%);&&
- FEATUREP DECLARE(J,EVEN)$
- FEATUREP(J,INTEGER);&&
- FREEOF FREEOF(Y,SIN(X+2*Y));
- FREEOF(COS(Y),"*",SIN(Y)+COS(X));&&
- FULLMAP FULLMAP(G,A+B*C);
- MAP(G,A+B*C);&&
- FULLMAPL FULLMAPL("+",[3,[4,5]],[[A,1],[0,-1.5]]);&&
- FUNCSOLVE FUNCSOLVE((N+1)*F(N)-(N+3)*F(N+1)/(N+1)=(N-1)/(N+2),F(N));&&
- functions
- KILL(X,Y,F,G,H);
- F(X):=X^2+Y;
- F(2);
- EV(F(2),Y:7);
- F(X):=SIN(X)^2+1;
- F(X+1);
- G(Y,Z):=F(Z)+3*Y;
- EV(G(2*Y+Z,-0.5),Y:7);
- H(N):=SUM(I*X^I,I,0,N);
- FUNCTIONS;
- T[N](X):=RATEXPAND(2*X*T[N-1](X)-T[N-2](X));
- T[0](X):=1$
- T[1](X):=X$
- T[4](Y);
- G[N](X):=SUM(EV(X),I,N,N+2);
- H(N,X):=SUM(EV(X),I,N,N+2);
- G[2](I^2);
- H(2,I^2);
- P[N](X):=RATSIMP(1/(2^N*N!)*DIFF((X^2-1)^N,X,N));
- Q(N,X):=RATSIMP(1/(2^N*N!)*DIFF((X^2-1)^N,X,N));
- P[2];
- P[2](Y+1);
- Q(2,Y);
- P[2](5);
- F[I,J](X,Y):=X^I+Y^J;
- G(FUN,A,B):=PRINT(FUN," applied to ",A," and ",B," is ",FUN(A,B))$
- G(F[2,1],SIN(%PI),2*C);&&
- GENMATRIX H[I,J]:=1/(I+J-1)$
- GENMATRIX(H,3,3);&&
- GET PUT(%E,TRANSCENDENTAL,TYPE);
- PUT(%PI,TRANSCENDENTAL,TYPE)$
- PUT(%I,ALGEBRAIC,TYPE)$
- TYPEOF(X):=BLOCK([Q], IF NUMBERP(X)
- THEN RETURN(ALGEBRAIC),
- IF NOT ATOM(X)
- THEN RETURN(MAPLIST(TYPEOF,X)),
- Q:GET(X,TYPE), IF Q=FALSE THEN
- ERROR("NOT NUMERIC") ELSE Q)$
- ERRCATCH(TYPEOF(2*%E+X*%PI));
- TYPEOF(2*%E+%PI);&&
- GFACTOR GFACTOR(X^4-1);&&
- GRADEF DEPENDS(Y,X);
- kill(f,g,j);
- GRADEF(F(X,Y),X^2,G(X,Y));
- DIFF(F(X,Y),X);
- GRADEF(J(N,Z),'DIFF(J(N,Z),N),
- J(N-1,Z)-N/Z*J(N,Z))$
- RATSIMP(DIFF(J(2,X),X,2));&&
- HORNER POLY:1.0E-20*X^2-5.5*X+5.2E20;
- ERRCATCH(EV(%,X=1.0E20));
- HORNER(POLY,X),KEEPFLOAT;
- EV(%,X=1.0E20);&&
- IF FIB[N]:=IF N=1 OR N=2 THEN 1 ELSE FIB[N-1]+FIB[N-2];
- FIB[1]+FIB[2];
- FIB[3];
- FIB[5];
- ETA(MU,NU):=IF MU=NU THEN MU ELSE IF MU>NU THEN MU-NU ELSE MU+NU;
- ETA(5,6);
- ETA(ETA(7,7),ETA(1,2));
- IF NOT 5>=2 AND 6<=5 OR 4+1>3 THEN A ELSE B;&&
- ILT 'INTEGRATE(SINH(A*X)*F(T-X),X,0,T)+B*F(T)=T^2;
- LAPLACE(%,T,S);
- LINSOLVE([%],['LAPLACE(F(T),T,S)]);
- ILT(EV(%[1]),S,T);&&
- INPART X+Y+W*Z;
- INPART(%,3,2);
- 'LIMIT(F(X)^G(X+1),X,0,MINUS);
- INPART(%,1,2);&&
- INTEGRATE
- test(f):=block([u],u:integrate(f,x),ratsimp(f-diff(u,x)));
- test(sin(x));
- test(1/(1+x));
- test(1/(1+x^2));
- INTEGRATE(SIN(X)^3,X);
- kill(q)$
- INTEGRATE(%E^X/(%E^X+2),X);
- INTEGRATE(1/(X*LOG(X)),X);
- INTEGRATE(SIN(2*X+3),X);
- INTEGRATE(%E^X*ERF(X),X);
- INTEGRATE(X/(X^3+1),X);
- DIFF(%,X);
- RATSIMP(%);
- INTEGRATE(X^(5/4)/(X+1)^(5/2),X,0,INF);
- GRADEF(Q(X),SIN(X^2));
- DIFF(LOG(Q(R(X))),X);
- INTEGRATE(%,X);&&
- IS IS(X^2>=2*X-1);
- ASSUME(A>1);
- IS(LOG(LOG(A+1)+1)>0 AND A^2+1>2*A);&&
- ISOLATE (A+B)^4*(1+X*(2*X+(C+D)^2));
- ISOLATE(%,X);
- RATEXPAND(%)$
- EV(%);
- (A+B)*(X+A+B)^2*%E^(X^2+A*X+B);
- ISOLATE(%,X),EXPTISOLATE:TRUE;&&
- LAMBDA LAMBDA([X,Y,Z],X^2+Y^2+Z^2);
- %(1,2,A);
- "+"(1,2,A);&&
- LAPLACE LAPLACE(%E^(2*T+A)*SIN(T)*T,T,S);&&
- LASSOCIATIVE DECLARE(G,LASSOCIATIVE);
- G(G(A,B),G(C,D));
- G(G(A,B),G(C,D))-G(A,G(B,G(C,D)));&&
- LET MATCHDECLARE([A,A1,A2],TRUE);
- ONELESS(X,Y):=IS(X=Y-1)$
- LET(A1*A2!,A1!,ONELESS,A2,A1);
- LET(A1!/A1,(A1-1)!),LETRAT;
- LETSIMP(N*M!*(N-1)!/M),LETRAT;
- LET(SIN(A)^2,1-COS(A)^2);
- SIN(X)^4;
- LETSIMP(%);&&
- LETRULES MATCHDECLARE([A,A1,A2],TRUE);
- ONELESS(X,Y):=IS(X=Y-1)$
- LET(A1*A2!,A1!,ONELESS,A2,A1);
- LET(A1!/A1,(A1-1)!),LETRAT;
- LETSIMP(N*M!*(N-1)!/M),LETRAT;
- LET(SIN(A)^2,1-COS(A)^2);
- SIN(X)^4;
- LETSIMP(%);&&
- LIMIT LIMIT(X*LOG(X),X,0,PLUS);
- LIMIT((1+X)^(1/X),X,0);
- LIMIT(%E^X/X,X,INF);
- LIMIT(SIN(1/X),X,0);&&
- LINEAR DECLARE(F,LINEAR);
- F(2*A+3*B);
- F(2*X+Y,X);&&
- LINSOLVE X+Z=Y$
- 2*A*X-Y=2*A^2$
- Y-2*Z=2$
- LINSOLVE([%TH(3),%TH(2),%],[X,Y,Z]),GLOBALSOLVE;&&
- LISTOFVARS LISTOFVARS(F(X[1]+Y)/G^(2+A));&&
- LISTS [X^2,Y/3,-2];
- %[1]*X;
- [A,%TH(2),%];&&
- LOGCONTRACT 2*(A*LOG(X) + 2*A*LOG(Y));
- LOGCONTRACT(%);
- LOGCONTRACT(LOG(SQRT(X+1)+SQRT(X)) + LOG(SQRT(X+1)-SQRT(X)));&&
- MAP MAP(F,X+A*Y+B*Z);
- MAP(LAMBDA([U],PARTFRAC(U,X)),X+1/(X^3+4*X^2+5*X+2));
- MAP(RATSIMP, X/(X^2+X)+(Y^2+Y)/Y);
- MAP("=",[A,B],[-0.5,3]);&&
- MATCHDECLARE MATCHDECLARE(A,TRUE)$
- TELLSIMP(SIN(A)^2,1-COS(A)^2)$
- SIN(Y)^2;
- KILL(RULES);
- NONZEROANDFREEOF(X,E):=IS(E#0 AND FREEOF(X,E));
- MATCHDECLARE(A,NONZEROANDFREEOF(X),B,FREEOF(X));
- DEFMATCH(LINEAR,A*X+B,X);
- LINEAR(3*Z+(Y+1)*Z+Y**2,Z);
- MATCHDECLARE([A,F],TRUE);
- CONSTINTERVAL(L,H):=CONSTANTP(H-L)$
- MATCHDECLARE(B,CONSTINTERVAL(A))$
- MATCHDECLARE(X,ATOM)$
- BLOCK(REMOVE(INTEGRATE,OUTATIVE),
- DEFMATCH(CHECKLIMITS,'INTEGRATE(F,X,A,B)),
- DECLARE(INTEGRATE,OUTATIVE))$
- 'INTEGRATE(SIN(T),T,X+%PI,X+2*%PI)$
- CHECKLIMITS(%);
- 'INTEGRATE(SIN(T),T,0,X)$
- CHECKLIMITS(%);&&
- MATRICES M:MATRIX([A,0],[B,1]);
- M^2;
- M.M;
- M[1,1]*M;
- %-%TH(2)+1;
- M^^-1;
- [X,Y].M;
- MATRIX([A,B,C],[D,E,F],[G,H,I]);
- %^^2;&&
- MINFACTORIAL N!/(N+1)!;
- MINFACTORIAL(%);&&
- MULTIPLICATIVE DECLARE(F,MULTIPLICATIVE);
- F(2*A*B);&&
- MULTTHRU X/(X-Y)^2-1/(X-Y)-F(X)/(X-Y)^3;
- MULTTHRU((X-Y)^3,%);
- RATEXPAND(%);
- ((A+B)^10*S^2+2*A*B*S+(A*B)^2)/(A*B*S^2);
- MULTTHRU(%);
- MULTTHRU(A.(B+C.(D+E)+F));&&
- NARY DECLARE(J,NARY);
- J(J(A,B),J(C,D));&&
- NOUNIFY 'LIMIT(F(X)^G(X+1),X,0,MINUS);
- IS(INPART(%,0)=NOUNIFY(LIMIT));&&
- NROOTS X^10-2*X^4+1/2;
- NROOTS(%,-6,9.1);&&
- NUMFACTOR GAMMA(7/2);
- NUMFACTOR(%);&&
- NUSUM NUSUM(N*N!,N,0,N);
- NUSUM(N^4*4^N/BINOMIAL(2*N,N),N,0,N);
- UNSUM(%,N);
- UNSUM(PROD(I^2,I,1,N),N);
- NUSUM(%,N,1,N);&&
- ODDFUN DECLARE(F,ODDFUN);
- F(-X);&&
- ODE2 X^2*'DIFF(Y,X) + 3*X*Y = SIN(X)/X;
- SOLN1:ODE2(%,Y,X);
- IC1(SOLN1,X=%PI,Y=0);
- 'DIFF(Y,X,2) + Y*'DIFF(Y,X)^3 = 0;
- SOLN2:ODE2(%,Y,X);
- RATSIMP(IC2(SOLN2,X=0,Y=0,'DIFF(Y,X)=2));
- BC2(SOLN2,X=0,Y=1,X=1,Y=3);&&
- OPTIMIZE DIFF(EXP(X^2+Y)/(X+Y),X,2);
- OPTIMIZE(%);&&
- ORDERGREAT A^2+B*X;
- ORDERGREAT(A);
- A^2+B*X;
- %-%TH(3);
- UNORDER();&&
- ORDERLESS Y^2+B*X;
- ORDERLESS(Y);
- Y^2+B*X;
- %-%TH(3);
- UNORDER();&&
- OUTATIVE DECLARE(F,OUTATIVE);
- F(2*A);&&
- PART X+Y/Z^2;
- PART(%,1,2,2);
- REMVALUE(X);
- 'INTEGRATE(F(X),X,A,B)+X;
- PART(%,1,1);
- X^2+2*X=Y^2;
- %+1;
- LHS(%);
- PART(%TH(2),2);
- PART(%,1);
- 27*Y^3+54*X*Y^2+36*X^2*Y+Y+8*X^3+X+1;
- PART(%,2,[1,3]);
- SQRT(PIECE/54);&&
- PARTFRAC 2/(X+2)-2/(X+1)+1/(X+1)^2;
- RATSIMP(%);
- PARTFRAC(%,X);&&
- PARTITION PARTITION(2*A*X*F(X),X);
- PARTITION(A+B,X);&&
- PICKAPART INTEGRATE(1/(X^3+2),X)$
- PICKAPART(%,1);&&
- POISSIMP PFEFORMAT:TRUE$
- POISSIMP(SIN(X)^2);
- (2*A^2-B)*COS(X+2*Y)-(A*B+5)*SIN(U-4*X);
- POISEXPT(%,2)$
- PRINTPOIS(%);
- POISINT(%TH(2),Y)$
- POISSIMP(%);
- POISSIMP(SIN(X)^5+COS(X)^5);
- PFEFORMAT:FALSE$&&
- POLARFORM RECTFORM(SIN(2*%I+X));
- POLARFORM(%);
- RECTFORM(LOG(3+4*%I));
- POLARFORM(%);
- RECTFORM((2+3.5*%I)^0.25),NUMER;
- POLARFORM(%);&&
- POLY_discriminant FACTOR(POLY_DISCRIMINANT((X-A)*(X-B)*(X-C),X));&&
- POSFUN DECLARE(F,POSFUN);
- IS(F(X)>0);&&
- POWERSERIES POWERSERIES(LOG(SIN(X)/X),X,0);&&
- PRINTPROPS GRADEF(R,X,X/R)$
- GRADEF(R,Y,Y/R)$
- PRINTPROPS(R,ATOMGRAD);
- PROPVARS(ATOMGRAD);&&
- PRODUCT PRODUCT(X+I*(I+1)/2,I,1,4);&&
- PROPERTIES PROPERTIES(CONS);
- ASSUME(VAR1>0);
- PROPERTIES(VAR1);
- VAR2:2$
- PROPERTIES(VAR2);&&
- PROPVARS GRADEF(R,X,X/R)$
- GRADEF(R,Y,Y/R)$
- PRINTPROPS(R,ATOMGRAD);
- PROPVARS(ATOMGRAD);&&
- QUNIT QUNIT(17);
- EXPAND(%*(SQRT(17)-4));&&
- RADCAN (LOG(X^2+X)-LOG(X))^A/LOG(X+1)^(A/2);
- RADCAN(%);
- LOG(A^(2*X)+2*A^X+1)/LOG(A^X+1);
- RADCAN(%);
- (%E^X-1)/(%E^(X/2)+1);
- RADCAN(%);&&
- RANK MATRIX([2,1-A,-5*B],[A,B,C]);
- RANK(%);&&
- RASSOCIATIVE DECLARE(G,RASSOCIATIVE);
- G(G(A,B),G(C,D));
- G(G(A,B),G(C,D))-G(A,G(B,G(C,D)));&&
- RAT RAT(X^2);
- DIFF(F(%),X);
- ((X-2*Y)^4/(X^2-4*Y^2)^2+1)*(Y+A)*(2*Y+X)/(4*Y^2+X^2);
- RAT(%,Y,A,X);
- (X+3)^20;
- RAT(%);
- DIFF(%,X);
- FACTOR(%);&&
- RATCOEFF A*X+B*X+5$
- RATCOEF(%,A+B);&&
- RATDIFF (4*X^3+10*X-11)/(X^5+5);
- MOD(%),MODULUS:3;
- RATDIFF(%TH(2),X);&&
- RATEXPAND RATEXPAND((2*X-3*Y)^3);
- (X-1)/(X+1)^2+1/(X-1);
- EXPAND(%);
- RATEXPAND(%TH(2));&&
- RATSIMP SIN(X/(X^2+X))=%E^((LOG(X)+1)^2-LOG(X)^2);
- RATSIMP(%);
- B*(A/B-X)+B*X+A;
- RATSIMP(%);
- ((X-1)^(3/2)-(X+1)*SQRT(X-1))/SQRT(X-1)/SQRT(X+1);
- RATSIMP(%);
- X^(A+1/A),RATSIMPEXPONS;&&
- RATSUBST RATSUBST(A,X*Y^2,X^4*Y^8+X^4*Y^3);
- 1 + COS(X) + COS(X)^2 + COS(X)^3 + COS(X)^4;
- RATSUBST(1-SIN(X)^2,COS(X)^2,%);
- RATSUBST(1-COS(X)^2,SIN(X)^2,SIN(X)^4);&&
- RATWEIGHT RATWEIGHT(A,1,B,1);
- RAT(A+B+1);
- %^2;
- EV(%TH(2)^2,RATWTLVL:1);&&
- REALPART (%I*V+U)/(F+%I*E)+%E^(%I*ALPHA);
- REALPART(%);&&
- REALROOTS REALROOTS(X^5-X-1,5.0E-6);
- %[1],FLOAT;
- X^5-X-1,%;&&
- RESIDUE RESIDUE(S/(S^2+A^2),S,A*%I);
- RESIDUE(SIN(A*X)/X^4,X,0);&&
- RESULTANT RESULTANT(A*Y+X^2+1,Y^2+X*Y+B,X);&&
- REVEAL INTEGRATE(1/(X^3+2),X)$
- REVEAL(%,2);
- REVEAL(%TH(2),3);&&
- REVERSE UNION(X,Y):=IF X=[] THEN Y ELSE
- IF MEMBER(T:FIRST(X),Y) THEN UNION(REST(X),Y)
- ELSE CONS(T,UNION(REST(X),Y))$
- UNION([A,B,1,1/2,X^2],[-X^2,A,Y,1/2]);
- BERNPOLY(X,5);
- MAPLIST(NUMFACTOR,%);
- APPLY(MIN,%);&&
- RISCH
- RISCH(X^2*ERF(X),X);
- DIFF(%,X),RATSIMP;&&
- ROOTSCONTRACT ROOTSCONMODE:FALSE$
- ROOTSCONTRACT(X^(1/2)*Y^(3/2));
- ROOTSCONTRACT(X^(1/2)*Y^(1/4));
- ROOTSCONMODE:TRUE$
- ROOTSCONTRACT(X^(1/2)*Y^(1/4));
- ROOTSCONTRACT(X^(1/2)*Y^(1/3));
- ROOTSCONMODE:ALL$
- ROOTSCONTRACT(X^(1/2)*Y^(1/4));
- ROOTSCONTRACT(X^(1/2)*Y^(1/3));
- ROOTSCONMODE:FALSE$
- ROOTSCONTRACT(SQRT(SQRT(X+1)+SQRT(X))*SQRT(SQRT(X+1)-SQRT(X)));
- ROOTSCONMODE:TRUE$
- ROOTSCONTRACT(SQRT(SQRT(5)+5)-5^(1/4)*SQRT(SQRT(5)+1));&&
- SCANMAP (A^2+2*A+1)*Y+X^2;
- SCANMAP(FACTOR,%);
- SCANMAP(FACTOR,EXPAND(%TH(2)));
- U*V^(A*X+B)+C;
- SCANMAP('F,%);&&
- SCSIMP EXP:K^2*N^2+K^2*M^2*N^2-K^2*L^2*N^2-K^2*L^2*M^2*N^2;
- EQ1:K^2+L^2=1;
- EQ2:N^2-M^2=1;
- SCSIMP(EXP,EQ1,EQ2);
- EXQ:(K1*K4-K1*K2-K2*K3)/K3^2;
- EQ3:K1*K4-K2*K3=0;
- EQ4:K1*K2+K3*K4=0;
- SCSIMP(EXQ,EQ3,EQ4);&&
- SOLVE SOLVE(ASIN(COS(3*X))*(F(X)-1),X);
- SOLVE(5^F(X)=125,F(X)),SOLVERADCAN;
- [4*X^2-Y^2=12,X*Y-X=2];
- SOLVE(%,[X,Y]);
- SOLVE(X^3+A*X+1,X);
- SOLVE(X^3-1);
- SOLVE(X^6-1);
- EV(X^6-1,%[1]);
- EXPAND(%);
- X^2-1;
- SOLVE(%,X);
- %TH(2),%[1];&&
- SPECINT ASSUME(P>0,A>0)$
- /* a Laplace transform */
- T^(1/2)*%E^(-A*T/4)*%E^(-P*T);
- SPECINT(%,T);
- /* a Bessel function */
- T^(1/2)*%J[1](2*A^(1/2)*T^(1/2))*%E^(-P*T);
- SPECINT(%,T);
- FORGET(P>0,A>0)$&&
- SQFR SQFR(4*X^4+4*X^3-3*X^2-4*X-1);&&
- SUBSTINPART X.'DIFF(F(X),X,2);
- SUBSTINPART(D^2,%,2);
- SUBSTINPART(F1,F[1](X+1),0);&&
- SUBSTITUTE SUBST(A,X+Y,X+(X+Y)^2+Y);
- SUBST(-%I,%I,A+B*%I);
- SUBST(X,Y,X+Y);
- SUBST(X=0,DIFF(SIN(X),X));
- ERRCATCH(EV(DIFF(SIN(X),X),X=0));
- INTEGRATE(X^I,X),I=-1;
- ERRCATCH(SUBST(-1,I,INTEGRATE(X^I,X)));
- MATRIX([A,B],[C,D]);
- SUBST("[",MATRIX,%);&&
- SUBSTPART 1/(X^2+2);
- SUBSTPART(3/2,%,2,1,2);
- 27*Y^3+54*X*Y^2+36*X^2*Y+Y+8*X^3+X+1;
- SUBSTPART(FACTOR(PIECE),%,[1,2,3,5]);
- 1/X+Y/X-1/Z;
- SUBSTPART(XTHRU(PIECE),%,[2,3]);
- SUBSTPART("+",%,1,0);
- RATSIMP((K^2*X^2-1)*(COS(X)+EPS)/(3*K+N[1])/(5*K-N[2]));
- FACTOR(%);
- SUBSTPART(RATSIMP(PIECE),%,1,[1,2]);
- -SUBSTPART(-PIECE,%,1,1);
- A+B/(X*(Y+(A+B)*X)+1);
- SUBSTPART(MULTTHRU(PIECE),%,1,2,1);&&
- SUM SUM(I^2+2^I,I,0,N),SIMPSUM;
- SUM(3^(-I),I,1,INF),SIMPSUM;
- SUM(I^2,I,1,4)*SUM(1/I^2,I,1,INF),SIMPSUM;
- SUM(I^2,I,1,5);&&
- SYMMETRIC DECLARE(H,SYMMETRIC);
- H(X,Z,Y);&&
- SYNTAX MATCHFIX("{","}");
- INFIX("|");
- {X|X>0};
- {X|X<2};
- INFIX(".U.")$
- INFIX(".I.")$
- %TH(4).U.%TH(3);
- %TH(5).U.%TH(4);
- {1,2,3}$
- {3,4,5}$
- %TH(2).U.%TH(2).U.%;
- INFIX(".U.",100,100)$
- INFIX(".I.",120,120)$
- %TH(5).U.%TH(5).U.%;
- REMOVE(".U.",OPERATOR)$
- ERRCATCH(%TH(7).U.%TH(3));
- REMOVE(["{","}",".I.",".U."],OPERATOR)$&&
- TAYLOR TAYLOR(SQRT(1+A*X+SIN(X)),X,0,3);
- %^2;
- TAYLOR(SQRT(1+X),X,0,5);
- %^2;
- PRODUCT((X^I+1)^2.5,I,1,INF)/(X^2+1);
- TAYLOR(%,X,0,3),KEEPFLOAT;
- TAYLOR(1/LOG(1+X),X,0,3);
- TAYLOR(COS(X)-SEC(X),X,0,5);
- TAYLOR((COS(X)-SEC(X))^3,X,0,5);
- TAYLOR((COS(X)-SEC(X))^-3,X,0,5);
- TAYLOR(SQRT(1-K^2*SIN(X)^2),X,0,6);
- TAYLOR((1+X)^N,X,0,4);
- TAYLOR(SIN(X+Y),X,0,3,Y,0,3);
- TAYLOR(SIN(X+Y),[X,Y],0,3);
- TAYLOR(1/SIN(X+Y),X,0,3,Y,0,3);
- TAYLOR(1/SIN(X+Y),[X,Y],0,3);&&
- TAYTORAT TAYLOR(1+X,[X,0,3]);
- 1/%;
- TAYLOR(1+X+Y+Z,[X,0,3],[Y,1,2],[Z,2,1]);
- 1/%;
- TAYLOR(1+X+Y+Z,[X,0,3],[Y,0,3],[Z,0,3]);
- 1/%;&&
- TELLRAT 10*(1+%I)/(3^(1/3)+%I);
- RATDISREP(RAT(%)),ALGEBRAIC;
- TELLRAT(A^2+A+1);
- A/(SQRT(2)+SQRT(3))+1/(A*SQRT(2)-1);
- RATDISREP(RAT(%)),ALGEBRAIC;
- TELLRAT(Y^2=X^2);&&
- TELLSIMP MATCHDECLARE(X,FREEOF(%I))$
- %IARGS:FALSE$
- TELLSIMP(SIN(%I*X),%I*SINH(X));
- TRIGEXPAND(SIN(X+%I*Y));
- %IARGS:TRUE$
- ERRCATCH(0^0);
- TELLSIMP(0^0,1),SIMP:FALSE;
- 0^0;
- REMRULE("^",%th(2)[1]);
- TELLSIMP(SIN(X)^2,1-COS(X)^2)$
- (SIN(X)+1)^2;
- EXPAND(%);
- SIN(X)^2;
- KILL(RULES);
- MATCHDECLARE(A,TRUE)$
- TELLSIMP(SIN(A)^2,1-COS(A)^2)$
- SIN(Y)^2;
- KILL(RULES);&&
- TRIANGULARIZE MATRIX([2,1-A,-5*B],[A,B,C]);
- TRIANGULARIZE(%);&&
- TRIG SIN(%PI/12)+TAN(%PI/6);
- EV(%,NUMER);
- SIN(1);
- SIN(1),NUMER;
- BETA(1/2,2/5);
- EV(%,NUMER);
- DIFF(ATANH(SQRT(X)),X);
- FPPREC:25$
- SIN(0.5B0);
- COS(X)^2-SIN(X)^2;
- EV(%,X:%PI/3);
- DIFF(%TH(2),X);
- INTEGRATE(%TH(3),X);
- EXPAND(%);
- TRIGEXPAND(%);
- TRIGREDUCE(%);
- SECH(X)^2*SINH(X)*TANH(X)/COTH(X)^2 + COSH(X)^2*SECH(X)^2*TANH(X)/COTH(X)^2
- + SECH(X)^2*TANH(X)/COTH(X)^2;
- TRIGSIMP(%);
- EV(SIN(X),EXPONENTIALIZE);
- TAYLOR(SIN(X)/X,X,0,4);
- EV(COS(X)^2-SIN(X)^2,SIN(X)^2=1-COS(X)^2);&&
- TRIGEXPAND X+SIN(3*X)/SIN(X),TRIGEXPAND,EXPAND;
- TRIGEXPAND(SIN(10*X+Y));&&
- TRIGREDUCE -SIN(X)^2+3*COS(X)^2+X;
- EXPAND(TRIGREDUCE(%));
- DECLARE(J,INTEGER,E,EVEN,O,ODD);
- SIN(X+(E+1/2)*%PI);
- SIN(X+(O+1/2)*%PI);&&
- UNORDER A^2+B*X;
- ORDERGREAT(A);
- A^2+B*X;
- %-%TH(3);
- UNORDER();&&
- XTHRU ((X+2)^20-2*Y)/(X+Y)^20+(X+Y)^-19-X/(X+Y)^20;
- XTHRU(%);&&
- ZEROEQUIV ZEROEQUIV(SIN(2*X)-2*SIN(X)*COS(X),X);
- ZEROEQUIV(%E^X+X,X);
- ZEROEQUIV(LOG(A*B)-LOG(A)-LOG(B),A);
-