home *** CD-ROM | disk | FTP | other *** search
- ##################################################
- #
- # md5.tcl - MD5 in Tcl
- # Author: Don Libes <libes@nist.gov>, July 1999
- # Version 1.2.0
- #
- # MD5 defined by RFC 1321, "The MD5 Message-Digest Algorithm"
- # HMAC defined by RFC 2104, "Keyed-Hashing for Message Authentication"
- #
- # Most of the comments below come right out of RFC 1321; That's why
- # they have such peculiar numbers. In addition, I have retained
- # original syntax, bugs in documentation (yes, really), etc. from the
- # RFC. All remaining bugs are mine.
- #
- # HMAC implementation by D. J. Hagberg <dhagberg@millibits.com> and
- # is based on C code in RFC 2104.
- #
- # For more info, see: http://expect.nist.gov/md5pure
- #
- # - Don
- #
- # Modified by Miguel Sofer to use inlines and simple variables
- ##################################################
-
- package require Tcl 8.2
- namespace eval ::md5 {
- }
-
- if {![catch {package require Trf 2.0}]} {
- # Trf is available, so implement the functionality provided here
- # in terms of calls to Trf for speed.
-
- proc ::md5::md5 {msg} {
- string tolower [::hex -mode encode [::md5 $msg]]
- }
-
- # hmac: hash for message authentication
-
- # MD5 of Trf and MD5 as defined by this package have slightly
- # different results. Trf returns the digest in binary, here we get
- # it as hex-string. In the computation of the HMAC the latter
- # requires back conversion into binary in some places. With Trf we
- # can use omit these.
-
- proc ::md5::hmac {key text} {
- # if key is longer than 64 bytes, reset it to MD5(key). If shorter,
- # pad it out with null (\x00) chars.
- set keyLen [string length $key]
- if {$keyLen > 64} {
- #old: set key [binary format H32 [md5 $key]]
- set key [::md5 $key]
- set keyLen [string length $key]
- }
-
- # ensure the key is padded out to 64 chars with nulls.
- set padLen [expr {64 - $keyLen}]
- append key [binary format "a$padLen" {}]
-
- # Split apart the key into a list of 16 little-endian words
- binary scan $key i16 blocks
-
- # XOR key with ipad and opad values
- set k_ipad {}
- set k_opad {}
- foreach i $blocks {
- append k_ipad [binary format i [expr {$i ^ 0x36363636}]]
- append k_opad [binary format i [expr {$i ^ 0x5c5c5c5c}]]
- }
-
- # Perform inner md5, appending its results to the outer key
- append k_ipad $text
- #old: append k_opad [binary format H* [md5 $k_ipad]]
- append k_opad [::md5 $k_ipad]
-
- # Perform outer md5
- #old: md5 $k_opad
- string tolower [::hex -mode encode [::md5 $k_opad]]
- }
-
- } else {
- # Without Trf use the all-tcl implementation by Don Libes.
-
- # T will be inlined after the definition of md5body
-
- # test md5
- #
- # This proc is not necessary during runtime and may be omitted if you
- # are simply inserting this file into a production program.
- #
- proc ::md5::test {} {
- foreach {msg expected} {
- ""
- "d41d8cd98f00b204e9800998ecf8427e"
- "a"
- "0cc175b9c0f1b6a831c399e269772661"
- "abc"
- "900150983cd24fb0d6963f7d28e17f72"
- "message digest"
- "f96b697d7cb7938d525a2f31aaf161d0"
- "abcdefghijklmnopqrstuvwxyz"
- "c3fcd3d76192e4007dfb496cca67e13b"
- "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
- "d174ab98d277d9f5a5611c2c9f419d9f"
- "12345678901234567890123456789012345678901234567890123456789012345678901234567890"
- "57edf4a22be3c955ac49da2e2107b67a"
- } {
- puts "testing: md5 \"$msg\""
- set computed [md5 $msg]
- puts "expected: $expected"
- puts "computed: $computed"
- if {0 != [string compare $computed $expected]} {
- puts "FAILED"
- } else {
- puts "SUCCEEDED"
- }
- }
- }
-
- # time md5
- #
- # This proc is not necessary during runtime and may be omitted if you
- # are simply inserting this file into a production program.
- #
- proc ::md5::time {} {
- foreach len {10 50 100 500 1000 5000 10000} {
- set time [::time {md5 [format %$len.0s ""]} 100]
- regexp -- "\[0-9]*" $time msec
- puts "input length $len: [expr {$msec/1000}] milliseconds per interation"
- }
- }
-
- #
- # We just define the body of md5pure::md5 here; later we
- # regsub to inline a few function calls for speed
- #
-
- set ::md5::md5body {
-
- #
- # 3.1 Step 1. Append Padding Bits
- #
-
- set msgLen [string length $msg]
-
- set padLen [expr {56 - $msgLen%64}]
- if {$msgLen % 64 > 56} {
- incr padLen 64
- }
-
- # pad even if no padding required
- if {$padLen == 0} {
- incr padLen 64
- }
-
- # append single 1b followed by 0b's
- append msg [binary format "a$padLen" \200]
-
- #
- # 3.2 Step 2. Append Length
- #
-
- # RFC doesn't say whether to use little- or big-endian
- # code demonstrates little-endian
- # This step limits our input to size 2^32b or 2^24B
- append msg [binary format "i1i1" [expr {8*$msgLen}] 0]
-
- #
- # 3.3 Step 3. Initialize MD Buffer
- #
-
- set A [expr 0x67452301]
- set B [expr 0xefcdab89]
- set C [expr 0x98badcfe]
- set D [expr 0x10325476]
-
- #
- # 3.4 Step 4. Process Message in 16-Word Blocks
- #
-
- # process each 16-word block
- # RFC doesn't say whether to use little- or big-endian
- # code says little-endian
- binary scan $msg i* blocks
-
- # loop over the message taking 16 blocks at a time
-
- foreach {X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15} $blocks {
-
- # Save A as AA, B as BB, C as CC, and D as DD.
- set AA $A
- set BB $B
- set CC $C
- set DD $D
-
- # Round 1.
- # Let [abcd k s i] denote the operation
- # a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s).
- # [ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4]
- set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X0 + $T01}] 7]}]
- set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X1 + $T02}] 12]}]
- set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X2 + $T03}] 17]}]
- set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X3 + $T04}] 22]}]
- # [ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8]
- set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X4 + $T05}] 7]}]
- set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X5 + $T06}] 12]}]
- set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X6 + $T07}] 17]}]
- set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X7 + $T08}] 22]}]
- # [ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]
- set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X8 + $T09}] 7]}]
- set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X9 + $T10}] 12]}]
- set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X10 + $T11}] 17]}]
- set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X11 + $T12}] 22]}]
- # [ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16]
- set A [expr {$B + [<<< [expr {$A + [F $B $C $D] + $X12 + $T13}] 7]}]
- set D [expr {$A + [<<< [expr {$D + [F $A $B $C] + $X13 + $T14}] 12]}]
- set C [expr {$D + [<<< [expr {$C + [F $D $A $B] + $X14 + $T15}] 17]}]
- set B [expr {$C + [<<< [expr {$B + [F $C $D $A] + $X15 + $T16}] 22]}]
-
- # Round 2.
- # Let [abcd k s i] denote the operation
- # a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s).
- # Do the following 16 operations.
- # [ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20]
- set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X1 + $T17}] 5]}]
- set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X6 + $T18}] 9]}]
- set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X11 + $T19}] 14]}]
- set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X0 + $T20}] 20]}]
- # [ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24]
- set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X5 + $T21}] 5]}]
- set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X10 + $T22}] 9]}]
- set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X15 + $T23}] 14]}]
- set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X4 + $T24}] 20]}]
- # [ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28]
- set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X9 + $T25}] 5]}]
- set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X14 + $T26}] 9]}]
- set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X3 + $T27}] 14]}]
- set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X8 + $T28}] 20]}]
- # [ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32]
- set A [expr {$B + [<<< [expr {$A + [G $B $C $D] + $X13 + $T29}] 5]}]
- set D [expr {$A + [<<< [expr {$D + [G $A $B $C] + $X2 + $T30}] 9]}]
- set C [expr {$D + [<<< [expr {$C + [G $D $A $B] + $X7 + $T31}] 14]}]
- set B [expr {$C + [<<< [expr {$B + [G $C $D $A] + $X12 + $T32}] 20]}]
-
- # Round 3.
- # Let [abcd k s t] [sic] denote the operation
- # a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s).
- # Do the following 16 operations.
- # [ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36]
- set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X5 + $T33}] 4]}]
- set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X8 + $T34}] 11]}]
- set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X11 + $T35}] 16]}]
- set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X14 + $T36}] 23]}]
- # [ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]
- set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X1 + $T37}] 4]}]
- set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X4 + $T38}] 11]}]
- set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X7 + $T39}] 16]}]
- set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X10 + $T40}] 23]}]
- # [ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44]
- set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X13 + $T41}] 4]}]
- set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X0 + $T42}] 11]}]
- set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X3 + $T43}] 16]}]
- set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X6 + $T44}] 23]}]
- # [ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48]
- set A [expr {$B + [<<< [expr {$A + [H $B $C $D] + $X9 + $T45}] 4]}]
- set D [expr {$A + [<<< [expr {$D + [H $A $B $C] + $X12 + $T46}] 11]}]
- set C [expr {$D + [<<< [expr {$C + [H $D $A $B] + $X15 + $T47}] 16]}]
- set B [expr {$C + [<<< [expr {$B + [H $C $D $A] + $X2 + $T48}] 23]}]
-
- # Round 4.
- # Let [abcd k s t] [sic] denote the operation
- # a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s).
- # Do the following 16 operations.
- # [ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]
- set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X0 + $T49}] 6]}]
- set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X7 + $T50}] 10]}]
- set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X14 + $T51}] 15]}]
- set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X5 + $T52}] 21]}]
- # [ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56]
- set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X12 + $T53}] 6]}]
- set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X3 + $T54}] 10]}]
- set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X10 + $T55}] 15]}]
- set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X1 + $T56}] 21]}]
- # [ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]
- set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X8 + $T57}] 6]}]
- set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X15 + $T58}] 10]}]
- set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X6 + $T59}] 15]}]
- set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X13 + $T60}] 21]}]
- # [ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64]
- set A [expr {$B + [<<< [expr {$A + [I $B $C $D] + $X4 + $T61}] 6]}]
- set D [expr {$A + [<<< [expr {$D + [I $A $B $C] + $X11 + $T62}] 10]}]
- set C [expr {$D + [<<< [expr {$C + [I $D $A $B] + $X2 + $T63}] 15]}]
- set B [expr {$C + [<<< [expr {$B + [I $C $D $A] + $X9 + $T64}] 21]}]
-
- # Then perform the following additions. (That is increment each
- # of the four registers by the value it had before this block
- # was started.)
- incr A $AA
- incr B $BB
- incr C $CC
- incr D $DD
- }
- # 3.5 Step 5. Output
-
- # ... begin with the low-order byte of A, and end with the high-order byte
- # of D.
-
- return [bytes $A][bytes $B][bytes $C][bytes $D]
- }
-
- #
- # Here we inline/regsub the functions F, G, H, I and <<<
- #
-
- namespace eval ::md5 {
- #proc md5pure::F {x y z} {expr {(($x & $y) | ((~$x) & $z))}}
- regsub -all -- {\[ *F +(\$.) +(\$.) +(\$.) *\]} $md5body {((\1 \& \2) | ((~\1) \& \3))} md5body
-
- #proc md5pure::G {x y z} {expr {(($x & $z) | ($y & (~$z)))}}
- regsub -all -- {\[ *G +(\$.) +(\$.) +(\$.) *\]} $md5body {((\1 \& \3) | (\2 \& (~\3)))} md5body
-
- #proc md5pure::H {x y z} {expr {$x ^ $y ^ $z}}
- regsub -all -- {\[ *H +(\$.) +(\$.) +(\$.) *\]} $md5body {(\1 ^ \2 ^ \3)} md5body
-
- #proc md5pure::I {x y z} {expr {$y ^ ($x | (~$z))}}
- regsub -all -- {\[ *I +(\$.) +(\$.) +(\$.) *\]} $md5body {(\2 ^ (\1 | (~\3)))} md5body
-
- # bitwise left-rotate
- if {0} {
- proc md5pure::<<< {x i} {
- # This works by bitwise-ORing together right piece and left
- # piece so that the (original) right piece becomes the left
- # piece and vice versa.
- #
- # The (original) right piece is a simple left shift.
- # The (original) left piece should be a simple right shift
- # but Tcl does sign extension on right shifts so we
- # shift it 1 bit, mask off the sign, and finally shift
- # it the rest of the way.
-
- # expr {($x << $i) | ((($x >> 1) & 0x7fffffff) >> (31-$i))}
-
- #
- # New version, faster when inlining
- # We replace inline (computing at compile time):
- # R$i -> (32 - $i)
- # S$i -> (0x7fffffff >> (31-$i))
- #
-
- expr { ($x << $i) | (($x >> R$i) & S$i)}
- }
- }
- # inline <<<
- regsub -all -- {\[ *<<< +\[ *expr +({[^\}]*})\] +([0-9]+) *\]} $md5body {(([set x [expr \1]] << \2) | (($x >> R\2) \& S\2))} md5body
-
- # now replace the R and S
- set map {}
- foreach i {
- 7 12 17 22
- 5 9 14 20
- 4 11 16 23
- 6 10 15 21
- } {
- lappend map R$i [expr {32 - $i}] S$i [expr {0x7fffffff >> (31-$i)}]
- }
-
- # inline the values of T
- foreach \
- tName {
- T01 T02 T03 T04 T05 T06 T07 T08 T09 T10
- T11 T12 T13 T14 T15 T16 T17 T18 T19 T20
- T21 T22 T23 T24 T25 T26 T27 T28 T29 T30
- T31 T32 T33 T34 T35 T36 T37 T38 T39 T40
- T41 T42 T43 T44 T45 T46 T47 T48 T49 T50
- T51 T52 T53 T54 T55 T56 T57 T58 T59 T60
- T61 T62 T63 T64 } \
- tVal {
- 0xd76aa478 0xe8c7b756 0x242070db 0xc1bdceee
- 0xf57c0faf 0x4787c62a 0xa8304613 0xfd469501
- 0x698098d8 0x8b44f7af 0xffff5bb1 0x895cd7be
- 0x6b901122 0xfd987193 0xa679438e 0x49b40821
-
- 0xf61e2562 0xc040b340 0x265e5a51 0xe9b6c7aa
- 0xd62f105d 0x2441453 0xd8a1e681 0xe7d3fbc8
- 0x21e1cde6 0xc33707d6 0xf4d50d87 0x455a14ed
- 0xa9e3e905 0xfcefa3f8 0x676f02d9 0x8d2a4c8a
-
- 0xfffa3942 0x8771f681 0x6d9d6122 0xfde5380c
- 0xa4beea44 0x4bdecfa9 0xf6bb4b60 0xbebfbc70
- 0x289b7ec6 0xeaa127fa 0xd4ef3085 0x4881d05
- 0xd9d4d039 0xe6db99e5 0x1fa27cf8 0xc4ac5665
-
- 0xf4292244 0x432aff97 0xab9423a7 0xfc93a039
- 0x655b59c3 0x8f0ccc92 0xffeff47d 0x85845dd1
- 0x6fa87e4f 0xfe2ce6e0 0xa3014314 0x4e0811a1
- 0xf7537e82 0xbd3af235 0x2ad7d2bb 0xeb86d391
- } {
- lappend map \$$tName $tVal
- }
- set md5body [string map $map $md5body]
-
-
- # Finally, define the proc
- proc md5 {msg} $md5body
-
- # unset auxiliary variables
- unset md5body tName tVal map
- }
-
- proc ::md5::byte0 {i} {expr {0xff & $i}}
- proc ::md5::byte1 {i} {expr {(0xff00 & $i) >> 8}}
- proc ::md5::byte2 {i} {expr {(0xff0000 & $i) >> 16}}
- proc ::md5::byte3 {i} {expr {((0xff000000 & $i) >> 24) & 0xff}}
-
- proc ::md5::bytes {i} {
- format %0.2x%0.2x%0.2x%0.2x [byte0 $i] [byte1 $i] [byte2 $i] [byte3 $i]
- }
-
- # hmac: hash for message authentication
- proc ::md5::hmac {key text} {
- # if key is longer than 64 bytes, reset it to MD5(key). If shorter,
- # pad it out with null (\x00) chars.
- set keyLen [string length $key]
- if {$keyLen > 64} {
- set key [binary format H32 [md5 $key]]
- set keyLen [string length $key]
- }
-
- # ensure the key is padded out to 64 chars with nulls.
- set padLen [expr {64 - $keyLen}]
- append key [binary format "a$padLen" {}]
-
- # Split apart the key into a list of 16 little-endian words
- binary scan $key i16 blocks
-
- # XOR key with ipad and opad values
- set k_ipad {}
- set k_opad {}
- foreach i $blocks {
- append k_ipad [binary format i [expr {$i ^ 0x36363636}]]
- append k_opad [binary format i [expr {$i ^ 0x5c5c5c5c}]]
- }
-
- # Perform inner md5, appending its results to the outer key
- append k_ipad $text
- append k_opad [binary format H* [md5 $k_ipad]]
-
- # Perform outer md5
- md5 $k_opad
- }
- }
-
- package provide md5 1.4
-
-