home *** CD-ROM | disk | FTP | other *** search
- #!/usr/bin/env python
-
- import unittest
- import random
- import time
- import pickle
- from math import log, exp, sqrt, pi
- from sets import Set
- from test import test_support
-
- class TestBasicOps(unittest.TestCase):
- # Superclass with tests common to all generators.
- # Subclasses must arrange for self.gen to retrieve the Random instance
- # to be tested.
-
- def randomlist(self, n):
- """Helper function to make a list of random numbers"""
- return [self.gen.random() for i in xrange(n)]
-
- def test_autoseed(self):
- self.gen.seed()
- state1 = self.gen.getstate()
- time.sleep(0.1)
- self.gen.seed() # diffent seeds at different times
- state2 = self.gen.getstate()
- self.assertNotEqual(state1, state2)
-
- def test_saverestore(self):
- N = 1000
- self.gen.seed()
- state = self.gen.getstate()
- randseq = self.randomlist(N)
- self.gen.setstate(state) # should regenerate the same sequence
- self.assertEqual(randseq, self.randomlist(N))
-
- def test_seedargs(self):
- for arg in [None, 0, 0L, 1, 1L, -1, -1L, 10**20, -(10**20),
- 3.14, 1+2j, 'a', tuple('abc')]:
- self.gen.seed(arg)
- for arg in [range(3), dict(one=1)]:
- self.assertRaises(TypeError, self.gen.seed, arg)
-
- def test_jumpahead(self):
- self.gen.seed()
- state1 = self.gen.getstate()
- self.gen.jumpahead(100)
- state2 = self.gen.getstate() # s/b distinct from state1
- self.assertNotEqual(state1, state2)
- self.gen.jumpahead(100)
- state3 = self.gen.getstate() # s/b distinct from state2
- self.assertNotEqual(state2, state3)
-
- self.assertRaises(TypeError, self.gen.jumpahead) # needs an arg
- self.assertRaises(TypeError, self.gen.jumpahead, "ick") # wrong type
- self.assertRaises(TypeError, self.gen.jumpahead, 2.3) # wrong type
- self.assertRaises(TypeError, self.gen.jumpahead, 2, 3) # too many
-
- def test_sample(self):
- # For the entire allowable range of 0 <= k <= N, validate that
- # the sample is of the correct length and contains only unique items
- N = 100
- population = xrange(N)
- for k in xrange(N+1):
- s = self.gen.sample(population, k)
- self.assertEqual(len(s), k)
- uniq = Set(s)
- self.assertEqual(len(uniq), k)
- self.failUnless(uniq <= Set(population))
- self.assertEqual(self.gen.sample([], 0), []) # test edge case N==k==0
-
- def test_sample_distribution(self):
- # For the entire allowable range of 0 <= k <= N, validate that
- # sample generates all possible permutations
- n = 5
- pop = range(n)
- trials = 10000 # large num prevents false negatives without slowing normal case
- def factorial(n):
- return reduce(int.__mul__, xrange(1, n), 1)
- for k in xrange(n):
- expected = factorial(n) / factorial(n-k)
- perms = {}
- for i in xrange(trials):
- perms[tuple(self.gen.sample(pop, k))] = None
- if len(perms) == expected:
- break
- else:
- self.fail()
-
- def test_sample_inputs(self):
- # SF bug #801342 -- population can be any iterable defining __len__()
- from sets import Set
- self.gen.sample(Set(range(20)), 2)
- self.gen.sample(range(20), 2)
- self.gen.sample(xrange(20), 2)
- self.gen.sample(dict.fromkeys('abcdefghijklmnopqrst'), 2)
- self.gen.sample(str('abcdefghijklmnopqrst'), 2)
- self.gen.sample(unicode('abcdefghijklmnopqrst'), 2)
- self.gen.sample(tuple('abcdefghijklmnopqrst'), 2)
-
- def test_gauss(self):
- # Ensure that the seed() method initializes all the hidden state. In
- # particular, through 2.2.1 it failed to reset a piece of state used
- # by (and only by) the .gauss() method.
-
- for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
- self.gen.seed(seed)
- x1 = self.gen.random()
- y1 = self.gen.gauss(0, 1)
-
- self.gen.seed(seed)
- x2 = self.gen.random()
- y2 = self.gen.gauss(0, 1)
-
- self.assertEqual(x1, x2)
- self.assertEqual(y1, y2)
-
- def test_pickling(self):
- state = pickle.dumps(self.gen)
- origseq = [self.gen.random() for i in xrange(10)]
- newgen = pickle.loads(state)
- restoredseq = [newgen.random() for i in xrange(10)]
- self.assertEqual(origseq, restoredseq)
-
- class WichmannHill_TestBasicOps(TestBasicOps):
- gen = random.WichmannHill()
-
- def test_strong_jumpahead(self):
- # tests that jumpahead(n) semantics correspond to n calls to random()
- N = 1000
- s = self.gen.getstate()
- self.gen.jumpahead(N)
- r1 = self.gen.random()
- # now do it the slow way
- self.gen.setstate(s)
- for i in xrange(N):
- self.gen.random()
- r2 = self.gen.random()
- self.assertEqual(r1, r2)
-
- def test_gauss_with_whseed(self):
- # Ensure that the seed() method initializes all the hidden state. In
- # particular, through 2.2.1 it failed to reset a piece of state used
- # by (and only by) the .gauss() method.
-
- for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
- self.gen.whseed(seed)
- x1 = self.gen.random()
- y1 = self.gen.gauss(0, 1)
-
- self.gen.whseed(seed)
- x2 = self.gen.random()
- y2 = self.gen.gauss(0, 1)
-
- self.assertEqual(x1, x2)
- self.assertEqual(y1, y2)
-
- class MersenneTwister_TestBasicOps(TestBasicOps):
- gen = random.Random()
-
- def test_referenceImplementation(self):
- # Compare the python implementation with results from the original
- # code. Create 2000 53-bit precision random floats. Compare only
- # the last ten entries to show that the independent implementations
- # are tracking. Here is the main() function needed to create the
- # list of expected random numbers:
- # void main(void){
- # int i;
- # unsigned long init[4]={61731, 24903, 614, 42143}, length=4;
- # init_by_array(init, length);
- # for (i=0; i<2000; i++) {
- # printf("%.15f ", genrand_res53());
- # if (i%5==4) printf("\n");
- # }
- # }
- expected = [0.45839803073713259,
- 0.86057815201978782,
- 0.92848331726782152,
- 0.35932681119782461,
- 0.081823493762449573,
- 0.14332226470169329,
- 0.084297823823520024,
- 0.53814864671831453,
- 0.089215024911993401,
- 0.78486196105372907]
-
- self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
- actual = self.randomlist(2000)[-10:]
- for a, e in zip(actual, expected):
- self.assertAlmostEqual(a,e,places=14)
-
- def test_strong_reference_implementation(self):
- # Like test_referenceImplementation, but checks for exact bit-level
- # equality. This should pass on any box where C double contains
- # at least 53 bits of precision (the underlying algorithm suffers
- # no rounding errors -- all results are exact).
- from math import ldexp
-
- expected = [0x0eab3258d2231fL,
- 0x1b89db315277a5L,
- 0x1db622a5518016L,
- 0x0b7f9af0d575bfL,
- 0x029e4c4db82240L,
- 0x04961892f5d673L,
- 0x02b291598e4589L,
- 0x11388382c15694L,
- 0x02dad977c9e1feL,
- 0x191d96d4d334c6L]
-
- self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
- actual = self.randomlist(2000)[-10:]
- for a, e in zip(actual, expected):
- self.assertEqual(long(ldexp(a, 53)), e)
-
- def test_long_seed(self):
- # This is most interesting to run in debug mode, just to make sure
- # nothing blows up. Under the covers, a dynamically resized array
- # is allocated, consuming space proportional to the number of bits
- # in the seed. Unfortunately, that's a quadratic-time algorithm,
- # so don't make this horribly big.
- seed = (1L << (10000 * 8)) - 1 # about 10K bytes
- self.gen.seed(seed)
-
- _gammacoeff = (0.9999999999995183, 676.5203681218835, -1259.139216722289,
- 771.3234287757674, -176.6150291498386, 12.50734324009056,
- -0.1385710331296526, 0.9934937113930748e-05, 0.1659470187408462e-06)
-
- def gamma(z, cof=_gammacoeff, g=7):
- z -= 1.0
- sum = cof[0]
- for i in xrange(1,len(cof)):
- sum += cof[i] / (z+i)
- z += 0.5
- return (z+g)**z / exp(z+g) * sqrt(2*pi) * sum
-
- class TestDistributions(unittest.TestCase):
- def test_zeroinputs(self):
- # Verify that distributions can handle a series of zero inputs'
- g = random.Random()
- x = [g.random() for i in xrange(50)] + [0.0]*5
- g.random = x[:].pop; g.uniform(1,10)
- g.random = x[:].pop; g.paretovariate(1.0)
- g.random = x[:].pop; g.expovariate(1.0)
- g.random = x[:].pop; g.weibullvariate(1.0, 1.0)
- g.random = x[:].pop; g.normalvariate(0.0, 1.0)
- g.random = x[:].pop; g.gauss(0.0, 1.0)
- g.random = x[:].pop; g.lognormvariate(0.0, 1.0)
- g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0)
- g.random = x[:].pop; g.gammavariate(0.01, 1.0)
- g.random = x[:].pop; g.gammavariate(1.0, 1.0)
- g.random = x[:].pop; g.gammavariate(200.0, 1.0)
- g.random = x[:].pop; g.betavariate(3.0, 3.0)
-
- def test_avg_std(self):
- # Use integration to test distribution average and standard deviation.
- # Only works for distributions which do not consume variates in pairs
- g = random.Random()
- N = 5000
- x = [i/float(N) for i in xrange(1,N)]
- for variate, args, mu, sigmasqrd in [
- (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12),
- (g.expovariate, (1.5,), 1/1.5, 1/1.5**2),
- (g.paretovariate, (5.0,), 5.0/(5.0-1),
- 5.0/((5.0-1)**2*(5.0-2))),
- (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0),
- gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]:
- g.random = x[:].pop
- y = []
- for i in xrange(len(x)):
- try:
- y.append(variate(*args))
- except IndexError:
- pass
- s1 = s2 = 0
- for e in y:
- s1 += e
- s2 += (e - mu) ** 2
- N = len(y)
- self.assertAlmostEqual(s1/N, mu, 2)
- self.assertAlmostEqual(s2/(N-1), sigmasqrd, 2)
-
- class TestModule(unittest.TestCase):
- def testMagicConstants(self):
- self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141)
- self.assertAlmostEqual(random.TWOPI, 6.28318530718)
- self.assertAlmostEqual(random.LOG4, 1.38629436111989)
- self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627)
-
- def test__all__(self):
- # tests validity but not completeness of the __all__ list
- self.failUnless(Set(random.__all__) <= Set(dir(random)))
-
- def test_main(verbose=None):
- testclasses = (WichmannHill_TestBasicOps,
- MersenneTwister_TestBasicOps,
- TestDistributions,
- TestModule)
- test_support.run_unittest(*testclasses)
-
- # verify reference counting
- import sys
- if verbose and hasattr(sys, "gettotalrefcount"):
- counts = [None] * 5
- for i in xrange(len(counts)):
- test_support.run_unittest(*testclasses)
- counts[i] = sys.gettotalrefcount()
- print counts
-
- if __name__ == "__main__":
- test_main(verbose=True)
-