home *** CD-ROM | disk | FTP | other *** search
- import unittest, os
- from test import test_support
-
- import warnings
- warnings.filterwarnings(
- "ignore",
- category=DeprecationWarning,
- message=".*complex divmod.*are deprecated"
- )
-
- from random import random
-
- # These tests ensure that complex math does the right thing
-
- class ComplexTest(unittest.TestCase):
-
- def assertAlmostEqual(self, a, b):
- if isinstance(a, complex):
- if isinstance(b, complex):
- unittest.TestCase.assertAlmostEqual(self, a.real, b.real)
- unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag)
- else:
- unittest.TestCase.assertAlmostEqual(self, a.real, b)
- unittest.TestCase.assertAlmostEqual(self, a.imag, 0.)
- else:
- if isinstance(b, complex):
- unittest.TestCase.assertAlmostEqual(self, a, b.real)
- unittest.TestCase.assertAlmostEqual(self, 0., b.imag)
- else:
- unittest.TestCase.assertAlmostEqual(self, a, b)
-
- def assertCloseAbs(self, x, y, eps=1e-9):
- """Return true iff floats x and y "are close\""""
- # put the one with larger magnitude second
- if abs(x) > abs(y):
- x, y = y, x
- if y == 0:
- return abs(x) < eps
- if x == 0:
- return abs(y) < eps
- # check that relative difference < eps
- self.assert_(abs((x-y)/y) < eps)
-
- def assertClose(self, x, y, eps=1e-9):
- """Return true iff complexes x and y "are close\""""
- self.assertCloseAbs(x.real, y.real, eps)
- self.assertCloseAbs(x.imag, y.imag, eps)
-
- def assertIs(self, a, b):
- self.assert_(a is b)
-
- def check_div(self, x, y):
- """Compute complex z=x*y, and check that z/x==y and z/y==x."""
- z = x * y
- if x != 0:
- q = z / x
- self.assertClose(q, y)
- q = z.__div__(x)
- self.assertClose(q, y)
- q = z.__truediv__(x)
- self.assertClose(q, y)
- if y != 0:
- q = z / y
- self.assertClose(q, x)
- q = z.__div__(y)
- self.assertClose(q, x)
- q = z.__truediv__(y)
- self.assertClose(q, x)
-
- def test_div(self):
- simple_real = [float(i) for i in xrange(-5, 6)]
- simple_complex = [complex(x, y) for x in simple_real for y in simple_real]
- for x in simple_complex:
- for y in simple_complex:
- self.check_div(x, y)
-
- # A naive complex division algorithm (such as in 2.0) is very prone to
- # nonsense errors for these (overflows and underflows).
- self.check_div(complex(1e200, 1e200), 1+0j)
- self.check_div(complex(1e-200, 1e-200), 1+0j)
-
- # Just for fun.
- for i in xrange(100):
- self.check_div(complex(random(), random()),
- complex(random(), random()))
-
- self.assertRaises(ZeroDivisionError, complex.__div__, 1+1j, 0+0j)
- # FIXME: The following currently crashes on Alpha
- # self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j)
-
- def test_truediv(self):
- self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j)
- self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)
-
- def test_floordiv(self):
- self.assertAlmostEqual(complex.__floordiv__(3+0j, 1.5+0j), 2)
- self.assertRaises(ZeroDivisionError, complex.__floordiv__, 3+0j, 0+0j)
-
- def test_coerce(self):
- self.assertRaises(OverflowError, complex.__coerce__, 1+1j, 1L<<10000)
-
- def test_richcompare(self):
- self.assertRaises(OverflowError, complex.__eq__, 1+1j, 1L<<10000)
- self.assertEqual(complex.__lt__(1+1j, None), NotImplemented)
- self.assertIs(complex.__eq__(1+1j, 1+1j), True)
- self.assertIs(complex.__eq__(1+1j, 2+2j), False)
- self.assertIs(complex.__ne__(1+1j, 1+1j), False)
- self.assertIs(complex.__ne__(1+1j, 2+2j), True)
- self.assertRaises(TypeError, complex.__lt__, 1+1j, 2+2j)
- self.assertRaises(TypeError, complex.__le__, 1+1j, 2+2j)
- self.assertRaises(TypeError, complex.__gt__, 1+1j, 2+2j)
- self.assertRaises(TypeError, complex.__ge__, 1+1j, 2+2j)
-
- def test_mod(self):
- self.assertRaises(ZeroDivisionError, (1+1j).__mod__, 0+0j)
-
- a = 3.33+4.43j
- try:
- a % 0
- except ZeroDivisionError:
- pass
- else:
- self.fail("modulo parama can't be 0")
-
- def test_divmod(self):
- self.assertRaises(ZeroDivisionError, divmod, 1+1j, 0+0j)
-
- def test_pow(self):
- self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0)
- self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0)
- self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j)
- self.assertAlmostEqual(pow(1j, -1), 1/1j)
- self.assertAlmostEqual(pow(1j, 200), 1)
- self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j)
-
- a = 3.33+4.43j
- self.assertEqual(a ** 0j, 1)
- self.assertEqual(a ** 0.+0.j, 1)
-
- self.assertEqual(3j ** 0j, 1)
- self.assertEqual(3j ** 0, 1)
-
- try:
- 0j ** a
- except ZeroDivisionError:
- pass
- else:
- self.fail("should fail 0.0 to negative or complex power")
-
- try:
- 0j ** (3-2j)
- except ZeroDivisionError:
- pass
- else:
- self.fail("should fail 0.0 to negative or complex power")
-
- # The following is used to exercise certain code paths
- self.assertEqual(a ** 105, a ** 105)
- self.assertEqual(a ** -105, a ** -105)
- self.assertEqual(a ** -30, a ** -30)
-
- self.assertEqual(0.0j ** 0, 1)
-
- b = 5.1+2.3j
- self.assertRaises(ValueError, pow, a, b, 0)
-
- def test_boolcontext(self):
- for i in xrange(100):
- self.assert_(complex(random() + 1e-6, random() + 1e-6))
- self.assert_(not complex(0.0, 0.0))
-
- def test_conjugate(self):
- self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j)
-
- def test_constructor(self):
- class OS:
- def __init__(self, value): self.value = value
- def __complex__(self): return self.value
- class NS(object):
- def __init__(self, value): self.value = value
- def __complex__(self): return self.value
- self.assertEqual(complex(OS(1+10j)), 1+10j)
- self.assertEqual(complex(NS(1+10j)), 1+10j)
- self.assertRaises(TypeError, complex, OS(None))
- self.assertRaises(TypeError, complex, NS(None))
-
- self.assertAlmostEqual(complex("1+10j"), 1+10j)
- self.assertAlmostEqual(complex(10), 10+0j)
- self.assertAlmostEqual(complex(10.0), 10+0j)
- self.assertAlmostEqual(complex(10L), 10+0j)
- self.assertAlmostEqual(complex(10+0j), 10+0j)
- self.assertAlmostEqual(complex(1,10), 1+10j)
- self.assertAlmostEqual(complex(1,10L), 1+10j)
- self.assertAlmostEqual(complex(1,10.0), 1+10j)
- self.assertAlmostEqual(complex(1L,10), 1+10j)
- self.assertAlmostEqual(complex(1L,10L), 1+10j)
- self.assertAlmostEqual(complex(1L,10.0), 1+10j)
- self.assertAlmostEqual(complex(1.0,10), 1+10j)
- self.assertAlmostEqual(complex(1.0,10L), 1+10j)
- self.assertAlmostEqual(complex(1.0,10.0), 1+10j)
- self.assertAlmostEqual(complex(3.14+0j), 3.14+0j)
- self.assertAlmostEqual(complex(3.14), 3.14+0j)
- self.assertAlmostEqual(complex(314), 314.0+0j)
- self.assertAlmostEqual(complex(314L), 314.0+0j)
- self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j)
- self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j)
- self.assertAlmostEqual(complex(314, 0), 314.0+0j)
- self.assertAlmostEqual(complex(314L, 0L), 314.0+0j)
- self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j)
- self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j)
- self.assertAlmostEqual(complex(0j, 3.14), 3.14j)
- self.assertAlmostEqual(complex(0.0, 3.14), 3.14j)
- self.assertAlmostEqual(complex("1"), 1+0j)
- self.assertAlmostEqual(complex("1j"), 1j)
- self.assertAlmostEqual(complex(), 0)
- self.assertAlmostEqual(complex("-1"), -1)
- self.assertAlmostEqual(complex("+1"), +1)
-
- class complex2(complex): pass
- self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j)
- self.assertAlmostEqual(complex(real=17, imag=23), 17+23j)
- self.assertAlmostEqual(complex(real=17+23j), 17+23j)
- self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j)
- self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j)
-
- c = 3.14 + 1j
- self.assert_(complex(c) is c)
- del c
-
- self.assertRaises(TypeError, complex, "1", "1")
- self.assertRaises(TypeError, complex, 1, "1")
-
- self.assertEqual(complex(" 3.14+J "), 3.14+1j)
- if test_support.have_unicode:
- self.assertEqual(complex(unicode(" 3.14+J ")), 3.14+1j)
-
- # SF bug 543840: complex(string) accepts strings with \0
- # Fixed in 2.3.
- self.assertRaises(ValueError, complex, '1+1j\0j')
-
- self.assertRaises(TypeError, int, 5+3j)
- self.assertRaises(TypeError, long, 5+3j)
- self.assertRaises(TypeError, float, 5+3j)
- self.assertRaises(ValueError, complex, "")
- self.assertRaises(TypeError, complex, None)
- self.assertRaises(ValueError, complex, "\0")
- self.assertRaises(TypeError, complex, "1", "2")
- self.assertRaises(TypeError, complex, "1", 42)
- self.assertRaises(TypeError, complex, 1, "2")
- self.assertRaises(ValueError, complex, "1+")
- self.assertRaises(ValueError, complex, "1+1j+1j")
- self.assertRaises(ValueError, complex, "--")
- if test_support.have_unicode:
- self.assertRaises(ValueError, complex, unicode("1"*500))
- self.assertRaises(ValueError, complex, unicode("x"))
-
- class EvilExc(Exception):
- pass
-
- class evilcomplex:
- def __complex__(self):
- raise EvilExc
-
- self.assertRaises(EvilExc, complex, evilcomplex())
-
- class float2:
- def __init__(self, value):
- self.value = value
- def __float__(self):
- return self.value
-
- self.assertAlmostEqual(complex(float2(42.)), 42)
- self.assertAlmostEqual(complex(real=float2(17.), imag=float2(23.)), 17+23j)
- self.assertRaises(TypeError, complex, float2(None))
-
- def test_hash(self):
- for x in xrange(-30, 30):
- self.assertEqual(hash(x), hash(complex(x, 0)))
- x /= 3.0 # now check against floating point
- self.assertEqual(hash(x), hash(complex(x, 0.)))
-
- def test_abs(self):
- nums = [complex(x/3., y/7.) for x in xrange(-9,9) for y in xrange(-9,9)]
- for num in nums:
- self.assertAlmostEqual((num.real**2 + num.imag**2) ** 0.5, abs(num))
-
- def test_repr(self):
- self.assertEqual(repr(1+6j), '(1+6j)')
-
- def test_neg(self):
- self.assertEqual(-(1+6j), -1-6j)
-
- def test_file(self):
- a = 3.33+4.43j
- b = 5.1+2.3j
-
- fo = None
- try:
- fo = open(test_support.TESTFN, "wb")
- print >>fo, a, b
- fo.close()
- fo = open(test_support.TESTFN, "rb")
- self.assertEqual(fo.read(), "%s %s\n" % (a, b))
- finally:
- if (fo is not None) and (not fo.closed):
- fo.close()
- try:
- os.remove(test_support.TESTFN)
- except (OSError, IOError):
- pass
-
- def test_main():
- test_support.run_unittest(ComplexTest)
-
- if __name__ == "__main__":
- test_main()
-