home *** CD-ROM | disk | FTP | other *** search
- // mathlib.c -- math primitives
-
- #include "cmdlib.h"
- #include "mathlib.h"
-
- #ifdef _WIN32
- //Improve floating-point consistency.
- //without this option weird floating point issues occur
- #pragma optimize( "p", on )
- #endif
-
-
- vec3_t vec3_origin = {0,0,0};
-
- /*
- ** NormalToLatLong
- **
- ** We use two byte encoded normals in some space critical applications.
- ** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format
- ** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format
- **
- */
- void NormalToLatLong( const vec3_t normal, byte bytes[2] ) {
- // check for singularities
- if ( normal[0] == 0 && normal[1] == 0 ) {
- if ( normal[2] > 0 ) {
- bytes[0] = 0;
- bytes[1] = 0; // lat = 0, long = 0
- } else {
- bytes[0] = 128;
- bytes[1] = 0; // lat = 0, long = 128
- }
- } else {
- int a, b;
-
- a = RAD2DEG( atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f );
- a &= 0xff;
-
- b = RAD2DEG( acos( normal[2] ) ) * ( 255.0f / 360.0f );
- b &= 0xff;
-
- bytes[0] = b; // longitude
- bytes[1] = a; // lattitude
- }
- }
-
- /*
- =====================
- PlaneFromPoints
-
- Returns false if the triangle is degenrate.
- The normal will point out of the clock for clockwise ordered points
- =====================
- */
- qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
- vec3_t d1, d2;
-
- VectorSubtract( b, a, d1 );
- VectorSubtract( c, a, d2 );
- CrossProduct( d2, d1, plane );
- if ( VectorNormalize( plane, plane ) == 0 ) {
- return qfalse;
- }
-
- plane[3] = DotProduct( a, plane );
- return qtrue;
- }
-
- /*
- ================
- MakeNormalVectors
-
- Given a normalized forward vector, create two
- other perpendicular vectors
- ================
- */
- void MakeNormalVectors (vec3_t forward, vec3_t right, vec3_t up)
- {
- float d;
-
- // this rotate and negate guarantees a vector
- // not colinear with the original
- right[1] = -forward[0];
- right[2] = forward[1];
- right[0] = forward[2];
-
- d = DotProduct (right, forward);
- VectorMA (right, -d, forward, right);
- VectorNormalize (right, right);
- CrossProduct (right, forward, up);
- }
-
-
- void Vec10Copy( vec_t *in, vec_t *out ) {
- out[0] = in[0];
- out[1] = in[1];
- out[2] = in[2];
- out[3] = in[3];
- out[4] = in[4];
- out[5] = in[5];
- out[6] = in[6];
- out[7] = in[7];
- out[8] = in[8];
- out[9] = in[9];
- }
-
-
- void VectorRotate3x3( vec3_t v, float r[3][3], vec3_t d )
- {
- d[0] = v[0] * r[0][0] + v[1] * r[1][0] + v[2] * r[2][0];
- d[1] = v[0] * r[0][1] + v[1] * r[1][1] + v[2] * r[2][1];
- d[2] = v[0] * r[0][2] + v[1] * r[1][2] + v[2] * r[2][2];
- }
-
- double VectorLength( const vec3_t v ) {
- int i;
- double length;
-
- length = 0;
- for (i=0 ; i< 3 ; i++)
- length += v[i]*v[i];
- length = sqrt (length); // FIXME
-
- return length;
- }
-
- qboolean VectorCompare( const vec3_t v1, const vec3_t v2 ) {
- int i;
-
- for (i=0 ; i<3 ; i++)
- if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON)
- return qfalse;
-
- return qtrue;
- }
-
- vec_t Q_rint (vec_t in)
- {
- return floor (in + 0.5);
- }
-
- void VectorMA( const vec3_t va, double scale, const vec3_t vb, vec3_t vc ) {
- vc[0] = va[0] + scale*vb[0];
- vc[1] = va[1] + scale*vb[1];
- vc[2] = va[2] + scale*vb[2];
- }
-
- void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross ) {
- cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
- cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
- cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
- }
-
- vec_t _DotProduct (vec3_t v1, vec3_t v2)
- {
- return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
- }
-
- void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out)
- {
- out[0] = va[0]-vb[0];
- out[1] = va[1]-vb[1];
- out[2] = va[2]-vb[2];
- }
-
- void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out)
- {
- out[0] = va[0]+vb[0];
- out[1] = va[1]+vb[1];
- out[2] = va[2]+vb[2];
- }
-
- void _VectorCopy (vec3_t in, vec3_t out)
- {
- out[0] = in[0];
- out[1] = in[1];
- out[2] = in[2];
- }
-
- void _VectorScale (vec3_t v, vec_t scale, vec3_t out)
- {
- out[0] = v[0] * scale;
- out[1] = v[1] * scale;
- out[2] = v[2] * scale;
- }
-
- vec_t VectorNormalize( const vec3_t in, vec3_t out ) {
- vec_t length, ilength;
-
- length = sqrt (in[0]*in[0] + in[1]*in[1] + in[2]*in[2]);
- if (length == 0)
- {
- VectorClear (out);
- return 0;
- }
-
- ilength = 1.0/length;
- out[0] = in[0]*ilength;
- out[1] = in[1]*ilength;
- out[2] = in[2]*ilength;
-
- return length;
- }
-
- vec_t ColorNormalize( const vec3_t in, vec3_t out ) {
- float max, scale;
-
- max = in[0];
- if (in[1] > max)
- max = in[1];
- if (in[2] > max)
- max = in[2];
-
- if (max == 0) {
- out[0] = out[1] = out[2] = 1.0;
- return 0;
- }
-
- scale = 1.0 / max;
-
- VectorScale (in, scale, out);
-
- return max;
- }
-
-
-
- void VectorInverse (vec3_t v)
- {
- v[0] = -v[0];
- v[1] = -v[1];
- v[2] = -v[2];
- }
-
- void ClearBounds (vec3_t mins, vec3_t maxs)
- {
- mins[0] = mins[1] = mins[2] = 99999;
- maxs[0] = maxs[1] = maxs[2] = -99999;
- }
-
- void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) {
- int i;
- vec_t val;
-
- for (i=0 ; i<3 ; i++)
- {
- val = v[i];
- if (val < mins[i])
- mins[i] = val;
- if (val > maxs[i])
- maxs[i] = val;
- }
- }
-
-
- /*
- =================
- PlaneTypeForNormal
- =================
- */
- int PlaneTypeForNormal (vec3_t normal) {
- if (normal[0] == 1.0 || normal[0] == -1.0)
- return PLANE_X;
- if (normal[1] == 1.0 || normal[1] == -1.0)
- return PLANE_Y;
- if (normal[2] == 1.0 || normal[2] == -1.0)
- return PLANE_Z;
-
- return PLANE_NON_AXIAL;
- }
-
- /*
- ================
- MatrixMultiply
- ================
- */
- void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
- out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
- in1[0][2] * in2[2][0];
- out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
- in1[0][2] * in2[2][1];
- out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
- in1[0][2] * in2[2][2];
- out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
- in1[1][2] * in2[2][0];
- out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
- in1[1][2] * in2[2][1];
- out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
- in1[1][2] * in2[2][2];
- out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
- in1[2][2] * in2[2][0];
- out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
- in1[2][2] * in2[2][1];
- out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
- in1[2][2] * in2[2][2];
- }
-
- void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
- {
- float d;
- vec3_t n;
- float inv_denom;
-
- inv_denom = 1.0F / DotProduct( normal, normal );
-
- d = DotProduct( normal, p ) * inv_denom;
-
- n[0] = normal[0] * inv_denom;
- n[1] = normal[1] * inv_denom;
- n[2] = normal[2] * inv_denom;
-
- dst[0] = p[0] - d * n[0];
- dst[1] = p[1] - d * n[1];
- dst[2] = p[2] - d * n[2];
- }
-
- /*
- ** assumes "src" is normalized
- */
- void PerpendicularVector( vec3_t dst, const vec3_t src )
- {
- int pos;
- int i;
- float minelem = 1.0F;
- vec3_t tempvec;
-
- /*
- ** find the smallest magnitude axially aligned vector
- */
- for ( pos = 0, i = 0; i < 3; i++ )
- {
- if ( fabs( src[i] ) < minelem )
- {
- pos = i;
- minelem = fabs( src[i] );
- }
- }
- tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
- tempvec[pos] = 1.0F;
-
- /*
- ** project the point onto the plane defined by src
- */
- ProjectPointOnPlane( dst, tempvec, src );
-
- /*
- ** normalize the result
- */
- VectorNormalize( dst, dst );
- }
-
- /*
- ===============
- RotatePointAroundVector
-
- This is not implemented very well...
- ===============
- */
- void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
- float degrees ) {
- float m[3][3];
- float im[3][3];
- float zrot[3][3];
- float tmpmat[3][3];
- float rot[3][3];
- int i;
- vec3_t vr, vup, vf;
- float rad;
-
- vf[0] = dir[0];
- vf[1] = dir[1];
- vf[2] = dir[2];
-
- PerpendicularVector( vr, dir );
- CrossProduct( vr, vf, vup );
-
- m[0][0] = vr[0];
- m[1][0] = vr[1];
- m[2][0] = vr[2];
-
- m[0][1] = vup[0];
- m[1][1] = vup[1];
- m[2][1] = vup[2];
-
- m[0][2] = vf[0];
- m[1][2] = vf[1];
- m[2][2] = vf[2];
-
- memcpy( im, m, sizeof( im ) );
-
- im[0][1] = m[1][0];
- im[0][2] = m[2][0];
- im[1][0] = m[0][1];
- im[1][2] = m[2][1];
- im[2][0] = m[0][2];
- im[2][1] = m[1][2];
-
- memset( zrot, 0, sizeof( zrot ) );
- zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
-
- rad = DEG2RAD( degrees );
- zrot[0][0] = cos( rad );
- zrot[0][1] = sin( rad );
- zrot[1][0] = -sin( rad );
- zrot[1][1] = cos( rad );
-
- MatrixMultiply( m, zrot, tmpmat );
- MatrixMultiply( tmpmat, im, rot );
-
- for ( i = 0; i < 3; i++ ) {
- dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
- }
- }
-