home *** CD-ROM | disk | FTP | other *** search
- /* Copyright (C) 1989, 1990 Aladdin Enterprises. All rights reserved.
- Distributed by Free Software Foundation, Inc.
-
- This file is part of Ghostscript.
-
- Ghostscript is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY. No author or distributor accepts responsibility
- to anyone for the consequences of using it or for whether it serves any
- particular purpose or works at all, unless he says so in writing. Refer
- to the Ghostscript General Public License for full details.
-
- Everyone is granted permission to copy, modify and redistribute
- Ghostscript, but only under the conditions described in the Ghostscript
- General Public License. A copy of this license is supposed to have been
- given to you along with Ghostscript so you can know your rights and
- responsibilities. It should be in a file named COPYING. Among other
- things, the copyright notice and this notice must be preserved on all
- copies. */
-
- /* gsim2out.c */
- /* Image to outline conversion for GhostScript library */
- #include "gx.h"
- #include "memory_.h"
- #include "gserrors.h"
- #include "gsmatrix.h"
- #include "gsstate.h"
- #include "gscoord.h"
- #include "gxfixed.h"
- #include "gxtype1.h"
-
- /*
- * Convert a bitmap image to an outline (path) representation.
- * The outline representation is in Adobe Type 1 CharString format.
- * See ghost.doc for more details.
- */
-
- /* Define the state of the conversion process. */
- typedef struct {
- /* The following are set at the beginning of the conversion. */
- gs_matrix ifm; /* inverse of (CTM */
- /* scaled by width/height * 4). */
- byte *limit; /* stop output here */
- int ox, oy; /* X/Y pixel offset of char origin */
- /* The following are updated dynamically. */
- byte *next; /* next byte goes here */
- int px, py; /* X/Y position at start of run */
- int cpx, cpy; /* px/py in character coordinates */
- int dx, dy; /* X/Y increment of current run */
- int count; /* # of steps in current run */
- } status;
-
- /* Define the scaling for the path tracer. */
- #define outline_scale 4
-
- /* Forward declarations */
- private int round_coord(P1(floatp));
- private int put_int(P2(status *, int));
- private void fill_cells(P4(byte *, byte *, int, int));
- private int trace_cells(P4(byte *, int, int, status *));
-
- /*
- * gs_type1imagepath encodes an image into a byte string supplied
- * by the caller. If the string is not big enough, the procedure
- * returns gs_error_limitcheck. Otherwise, the procedure returns
- * the actual number of bytes of data stored.
- */
- int
- gs_type1imagepath(gs_state *pgs, byte *data, int width, int height,
- floatp wx, floatp wy, floatp origin_x, floatp origin_y,
- byte *str, uint maxlen)
- { uint csize;
- byte *cells;
- status stat;
- status *out = &stat;
- int lsbx;
- int iwx, iwy, ilsbx, ilsby;
- int code;
- /* Construct the coordinate transformation. */
- { float hsc = height * outline_scale;
- gs_matrix mat;
- gs_currentmatrix(pgs, &stat.ifm);
- #ifdef DEBUG
- if ( gs_debug['0'] )
- dprintf6("[0]ctm=[%g %g %g %g %g %g]\n",
- stat.ifm.xx, stat.ifm.xy, stat.ifm.yx, stat.ifm.yy,
- stat.ifm.tx, stat.ifm.ty);
- #endif
- if ( (code = gs_make_scaling(hsc, hsc, &mat)) < 0 ||
- (code = gs_matrix_multiply(&mat, &stat.ifm, &stat.ifm)) < 0 ||
- (code = gs_matrix_invert(&stat.ifm, &stat.ifm)) < 0
- )
- return code;
- }
- /* Allocate and fill in the cell matrix. */
- csize = (width + 2) * (height + 2);
- cells = (byte *)gs_malloc(csize, 1, "gsim2out cells");
- if ( cells == 0 ) return_error(gs_error_VMerror);
- fill_cells(cells, data, width, height);
- /* Initialize the rest of the state. */
- stat.next = str;
- stat.limit = str + maxlen;
- /* Determine the left side bearing by looking for */
- /* the leftmost column with any 1-bits. */
- for ( lsbx = 0; lsbx < width; lsbx++ )
- { int y;
- for ( y = 1; y <= height; y++ )
- if ( cells[y * (width + 2) + lsbx + 1] ) goto xit;
- }
- xit: /* Encode the origin, width, and side bearing. */
- { gs_point opt, wpt, lsbpt;
- if ( (code = gs_distance_transform(origin_x * outline_scale,
- origin_y * outline_scale,
- &stat.ifm, &opt)) < 0 ||
- (code = gs_distance_transform(wx * outline_scale,
- wy * outline_scale,
- &stat.ifm, &wpt)) < 0 ||
- (code = gs_distance_transform((lsbx - origin_x) *
- outline_scale, (floatp)0,
- &stat.ifm, &lsbpt)) < 0
- )
- return code;
- stat.ox = round_coord(opt.x);
- stat.oy = round_coord(opt.y);
- iwx = round_coord(wpt.x);
- iwy = round_coord(wpt.y);
- ilsbx = round_coord(lsbpt.x);
- ilsby = round_coord(lsbpt.y);
- #ifdef DEBUG
- if ( gs_debug['0'] )
- { int cy, cx;
- byte *cp = data;
- dprintf6("[0]w=%d h=%d oxy=(%g,%g) wxy=(%g,%g)\n",
- width, height, origin_x, origin_y, wx, wy);
- dprintf6(" io=(%d,%d) iw=(%d,%d) ilsb=(%d,%d)\n",
- stat.ox, stat.oy, iwx, iwy, ilsbx, ilsby);
- for ( cy = 0; cy < height; cy++ )
- { dprintf1("[0]%3d ", cy);
- for ( cx = 0; cx < width; cx += 8 )
- dprintf1("%02x", (int)*cp++);
- dputc('\n');
- }
- }
- #endif
- if ( (code = put_int(out, ilsbx)) < 0 ) return code;
- if ( iwy != 0 || ilsby != 0 )
- { if ( (code = put_int(out, ilsby)) < 0 ||
- (code = put_int(out, iwx)) < 0 ||
- (code = put_int(out, iwy)) < 0
- )
- return code;
- if ( stat.next + 2 > stat.limit )
- return_error(gs_error_limitcheck);
- *stat.next++ = (byte)c_escape;
- *stat.next++ = (byte)ce_sbw;
- }
- else
- { if ( (code = put_int(out, iwx)) < 0 ) return code;
- if ( stat.next + 1 > stat.limit )
- return_error(gs_error_limitcheck);
- *stat.next++ = (byte)c_hsbw;
- }
- }
- /* Since all further movements are relative, we can account */
- /* for the origin by simply setting px/py to the lsb, */
- /* and cpx/cpy to the lsb plus the origin. */
- stat.px = (lsbx * outline_scale);
- stat.py = (int)(origin_y * outline_scale);
- stat.cpx = ilsbx + stat.ox;
- stat.cpy = ilsby + stat.oy;
- /* Trace the outline of the cells. */
- code = trace_cells(cells, width, height, out);
- gs_free((char *)cells, csize, 1, "gsim2out cells");
- if ( code < 0 ) return code;
- if ( stat.next >= stat.limit ) return_error(gs_error_limitcheck);
- *stat.next++ = (byte)c_endchar;
- return stat.next - str;
- }
-
- /* Fill the cell matrix with the image being traced. */
- /* The cell matrix has a row and column of zero padding on each side, */
- /* so we don't have to check for boundary conditions all the time. */
- /* Note that the image data are in PostScript / Ghostscript standard */
- /* order (left to right, top row first), but the cells are stored */
- /* bottom row first. */
- private void
- fill_cells(byte *cells, byte *data, int width, int height)
- { int y;
- byte *dptr = data - 1;
- byte *cptr = cells + (width + 2) * height + 1;
- memset(cells, 0, (width + 2) * (height + 2));
- for ( y = 0; y < height; y++ )
- { register int mask = 0;
- register int b;
- register int x;
- for ( x = 0; x < width; x++, mask >>= 1, cptr++ )
- { if ( mask == 0 ) mask = 0x80, b = *++dptr;
- if ( b & mask ) *cptr = 1;
- }
- cptr -= width * 2 + 2; /* back up 1 row */
- }
- }
-
- /* Trace the cells to form an outline. The trace goes in clockwise */
- /* order, always starting by going west along a bottom edge. */
- /* All the subsidiary routines return 0 on success, */
- /* -1 if the output buffer overflowed. */
- private int trace_from(P3(status *, byte *, int));
- private int add_dxdy(P4(status *, int, int, int));
- #define add_deltas(s, dx, dy, n)\
- if ( (code = add_dxdy(s, dx, dy, n)) < 0 ) return code
- private int put_dxdy(P4(status *, int, int, int));
- #define put_deltas(s, dx, dy, moving)\
- if ( (code = put_dxdy(s, dx, dy, moving)) < 0 ) return code
- private int
- trace_cells(byte *cells, int width, int height, register status *out)
- { byte *cptr;
- int code;
- for ( cptr = cells + (width + 2) * (height + 1) - 2;
- cptr >= cells; cptr--
- )
- { if ( *cptr == 1 && cptr[-(width+2)] == 0 )
- { /* Found a starting point */
- int x = (cptr-cells) % (width+2) - 1;
- int y = (cptr-cells) / (width+2) - 1;
- put_deltas(out,
- x * outline_scale + 1 - out->px,
- y * outline_scale - out->py,
- 1);
- out->count = 0;
- if ( (code = trace_from(out, cptr, width)) < 0 )
- return code;
- if ( out->next >= out->limit )
- return_error(gs_error_limitcheck);
- *out->next++ = (byte)c_closepath;
- }
- }
- return 0;
- }
-
- /* Trace a path */
- private int
- trace_from(register status *out, byte *cptr, int width)
- { typedef enum { /* must be in this order */
- north = 0, east = 1, south = 2, west = 3
- } direction;
- direction dir;
- int w2 = width + 2; /* actual width of cell rows */
- int part; /* how far along edge we are */
- int code;
- /* Movement tables */
- typedef struct {
- short tx, ty; /* relative index of first cell */
- /* to test (counter-clockwise move) */
- short dx, dy; /* continue in same direction */
- } dir_descr;
- static dir_descr nesw[4+1] =
- { /* Going north (along a western edge) */
- { -1, 1, 0, 1 },
- /* Going east (along a northern edge) */
- { 1, 1, 1, 0 },
- /* Going south (along an eastern edge) */
- { 1, -1, 0, -1 },
- /* Going west (along a southern edge) */
- { -1, -1, -1, 0 },
- /* An extra copy of north */
- { -1, 1, 0, 1 }
- };
- for ( dir = west, part = 1; ; )
- { register dir_descr *pd = &nesw[(int)dir];
- int dx = pd->dx, dy = pd->dy;
- int delta;
- if ( dir == west )
- { /* This is the only case that has to check */
- /* for the end of a subpath. */
- if ( *cptr == 2 ) return 0;
- *cptr = 2;
- }
- delta = pd->ty * w2 + pd->tx;
- if ( cptr[delta] ) /* go counter-clockwise */
- { cptr += delta;
- add_deltas(out, dx, dy, 1 - part);
- add_deltas(out, pd->tx, pd->ty, outline_scale - 1);
- dir = (direction)(((int)dir - 1) & 3);
- part = outline_scale - 1;
- continue;
- }
- delta = dy * w2 + dx;
- if ( !cptr[delta] ) /* go clockwise */
- { add_deltas(out, dx, dy, outline_scale - 1 - part);
- add_deltas(out, dx + pd[1].dx, dy + pd[1].dy, 1);
- dir = (direction)(((int)dir + 1) & 3);
- part = 1;
- continue;
- }
- cptr += delta; /* go in same direction */
- add_deltas(out, dx, dy, outline_scale);
- }
- }
-
- /* Add a (dx, dy) pair to the path being formed. */
- /* Accumulate successive segments in the same direction. */
- private int
- add_dxdy(register status *out, int dx, int dy, int count)
- { int code;
- if ( count != 0 )
- { if ( dx == out->dx && dy == out->dy )
- out->count += count;
- else
- { if ( out->count != 0 )
- put_deltas(out, out->dx * out->count,
- out->dy * out->count, 0);
- out->dx = dx, out->dy = dy;
- out->count = count;
- }
- }
- return 0;
- }
-
- /* Encode a (dx, dy) pair onto the path. */
- /* If there isn't enough space, return -1. */
- private int
- put_dxdy(register status *out, int dx, int dy, int moving)
- { int code;
- /* We do the arithmetic in the 1/4-pixel coordinate system, */
- /* and then transform the result, to avoid accumulating */
- /* rounding errors. */
- int npx = out->px + dx, npy = out->py + dy;
- gs_point npt;
- int ncpx, ncpy;
- int cdx, cdy;
- gs_distance_transform((floatp)npx, (floatp)npy, &out->ifm, &npt);
- ncpx = round_coord(npt.x);
- ncpy = round_coord(npt.y);
- cdx = ncpx - out->cpx;
- cdy = ncpy - out->cpy;
- #ifdef DEBUG
- if ( gs_debug['0'] )
- dprintf8("[0] pxy=(%d,%d)+(%d,%d) cpxy=(%d,%d)+(%d,%d)\n",
- out->px, out->py, dx, dy, out->cpx, out->cpy, cdx, cdy);
- #endif
- if ( cdx != 0 || cdy == 0 ) /* encode dx if needed */
- if ( (code = put_int(out, cdx)) < 0 ) return code;
- if ( cdy != 0 ) /* encode dy if needed */
- if ( (code = put_int(out, cdy)) < 0 ) return code;
- if ( out->next == out->limit ) return_error(gs_error_limitcheck);
- *out->next++ = (byte)
- (cdy == 0 ? /* use hmove/lineto */
- (moving ? c_hmoveto : c_hlineto) :
- cdx == 0 ? /* use vmove/lineto */
- (moving ? c_vmoveto : c_vlineto) :
- (moving ? c_rmoveto : c_rlineto));
- out->px = npx, out->py = npy;
- out->cpx = ncpx, out->cpy = ncpy;
- return 0;
- }
-
- /* Round a floating point coordinate. If it is out of range, */
- /* return a limiting value. */
- private int
- round_coord(floatp v)
- { long c = (long)(v + 0.5);
- return( c > 0x7fff ? 0x7fff :
- c < -0x7fff ? -0x7fff :
- (int)c );
- }
- /* Encode a single number in Type 1 representation. */
- private int
- put_int(status *out, register int v)
- {
- #define min_enc_num1 ((c_min_num - c_max_num1) / 2)
- #define max_enc_num1 ((c_max_num1 - c_min_num) / 2)
- #define min_enc_num2 (max_enc_num1 + 1)
- #define max_enc_num2 (min_enc_num2 + (c_max_num2 - c_max_num1) * 256 - 1)
- #define min_enc_num3 (-max_enc_num2)
- #define max_enc_num3 (-min_enc_num2)
- register byte *ptr = out->next;
- if ( ptr + 5 > out->limit ) /* conservative test is faster */
- return_error(gs_error_limitcheck);
- if ( v >= min_enc_num1 && v <= max_enc_num1 )
- *ptr++ = v - min_enc_num1 + c_min_num;
- else if ( v >= min_enc_num2 && v <= max_enc_num2 )
- { v -= min_enc_num2;
- *ptr++ = (v >> 8) + c_max_num1+1;
- *ptr++ = v & 0xff;
- }
- else if ( v >= min_enc_num3 && v <= max_enc_num3 )
- { v = -(v - max_enc_num3);
- *ptr++ = (v >> 8) + c_max_num2+1;
- *ptr++ = v & 0xff;
- }
- else
- { *ptr++ = c_max_num3+1;
- *ptr++ = ((long)v >> 24) & 0xff;
- *ptr++ = ((long)v >> 16) & 0xff;
- *ptr++ = (v >> 8) & 0xff;
- *ptr++ = v & 0xff;
- }
- out->next = ptr;
- return 0;
- }
-