home *** CD-ROM | disk | FTP | other *** search
-
- _N_o_n_p_a_r_a_m_e_t_r_i_c _B_C_a _c_o_n_f_i_d_e_n_c_e _l_i_m_i_t_s
-
- bcanon(x, nboot, theta, ...,
- alpha=c(0.025, 0.05, 0.1, 0.16, 0.84, 0.9, 0.95, 0.975))
-
- _A_r_g_u_m_e_n_t_s:
-
- x: a vector containing the data. To bootstrap
- more complex data structures (e.g bivariate
- data) see the last example below.
-
- nboot: number of bootstrap replications
-
- theta: function defining the estimator used in con-
- structing the confidence points
-
- alpha: optional argument specifying confidence lev-
- els desired
-
- _V_a_l_u_e_s:
-
- list with the following components
-
- confpoint: estimated bca confidence limits
-
- z0: estimated bias correction
-
- acc: estimated acceleration constant
-
- u: jackknife influence values
-
- _R_e_f_e_r_e_n_c_e_s:
-
- Efron, B. and Tibshirani, R. (1986). The Bootstrap
- Method for standard errors, confidence intervals, and
- other measures of statistical accuracy. Statistical
- Science, Vol 1., No. 1, pp 1-35.
-
- Efron, B. (1987). Better bootstrap confidence intervals
- (with discussion).
- J. Amer. Stat. Assoc. vol 82, pg 171
-
- Efron, B. and Tibshirani, R. (1993) An Introduction to
- the Bootstrap. Chapman and Hall, New York, London.
-
- _E_x_a_m_p_l_e_s:
-
- # bca limits for the mean
- # (this is for illustration;
- # since "mean" is a built in function,
- # bcanon(x,100,mean) would be simpler!)
- x <- rnorm(20)
- theta <- function(x)mean(x)
- results <- bcanon(x,100,theta)
-
- # To obtain bca limits for functions of more
- # complex data structures, write theta
- # so that its argument x is the set of observation
- # numbers and simply pass as data to bcanon
- # the vector 1,2,..n.
- # For example, find bca limits for
- # the correlation coefficient from a set of 15 data pairs:
- xdata <- matrix(rnorm(30),ncol=2)
- n <- 15
- theta <- function(x,xdata) cor(xdata[x,1],xdata[x,2])
- results <- bcanon(1:n,100,theta,xdata)
-
-