home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!cis.ohio-state.edu!zaphod.mps.ohio-state.edu!sol.ctr.columbia.edu!ira.uka.de!chx400!sicsun!disuns2!/!diderich
- From: diderich@di.epfl.ch (Claude G. Diderich)
- Newsgroups: comp.theory
- Subject: How to approximate the following NP-complete problem?
- Keywords: NP, NP-complete, Ptas, Apx, Max SNP
- Message-ID: <1992Nov11.095204@disuns2.epfl.ch>
- Date: 11 Nov 92 08:52:04 GMT
- Sender: news@disuns2.epfl.ch
- Reply-To: diderich@di.epfl.ch (Claude G. Diderich)
- Followup-To: diderich@di.epfl.ch (Claude G. Diderich)
- Organization: Ecole Polytechnique Federale de Lausanne, Suisse
- Lines: 30
- Nntp-Posting-Host: disuns2.epfl.ch
-
- Dear reader,
-
- I am studying the complexity of the following problem. I am especially
- interested in classifying this problem in any apporximation class
- (like Ptas, Apx, Max SNP, etc...). Do you know of any references or
- results on this subject? Any personal ideas are greatly appreciated!
- Please e-mail and I will summarize.
-
- Here is the problem:
- You have a set of p linear equations of the form
- a_{i,1} x_1 + ... + a_{i,v} x_v = b_i for i \in {1..p}.
- Find a subset of equations that are satisfiable, e.g. that
- have a solution (not necessarily unique) and that is maximal
- in its dimension.
-
- The problem can be solved in polynomial time if the number of
- variables v is constant.
-
- But no approximation results are known to me by this time.
-
- Thanks all theory folk for reading this,
-
- Claude G Diderich
-
- ---------------------------------------------------------------------------
- Claude G. Diderich Internet: diderich@di.epfl.ch
- 30, Avenue S.Reymondin -- CH-1009 Pully (VD) -- Switzerland -- Europe
-
- ``Imagination is more important than knowledge'' Albert Einstein
- ---------------------------------------------------------------------------
-