home *** CD-ROM | disk | FTP | other *** search
- Xref: sparky comp.lang.c:16054 comp.lang.c++:15847 comp.lang.pascal:6364 comp.lang.misc:3512
- Path: sparky!uunet!cis.ohio-state.edu!zaphod.mps.ohio-state.edu!sdd.hp.com!spool.mu.edu!agate!ygdrasil.CS.Berkeley.EDU!faustus
- From: faustus@ygdrasil.CS.Berkeley.EDU (Wayne A. Christopher)
- Newsgroups: comp.lang.c,comp.lang.c++,comp.lang.pascal,comp.lang.misc
- Subject: Re: Software design =/= Programming
- Date: 6 Nov 1992 05:14:05 GMT
- Organization: University of California, Berkeley
- Lines: 11
- Message-ID: <1dcuutINNi8t@agate.berkeley.edu>
- References: <mazz.719989080@pluto> <josef.720690811@uranium> <1992Nov04.073218.11970@cadlab.sublink.org>
- NNTP-Posting-Host: ygdrasil.cs.berkeley.edu
-
- In article <1992Nov04.073218.11970@cadlab.sublink.org> martelli@cadlab.sublink.org (Alex Martelli) writes:
- > The point of Goedel's Theorem is, that for *ANY* formal system "powerful
- > enough" ... there will be *true* statements about the formal
- > systems that cannot be proven from that set of axioms!!!
-
- Not exactly -- what it says is that for any set of axioms A there will
- be statements S such that A does not imply S and A does not imply not
- S. The notion of truth doesn't come into it, since in a formal system
- either something is provable or isn't.
-
- Wayne
-