home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!ogicse!das-news.harvard.edu!spdcc!iecc!compilers-sender
- From: kuzemcha@tartan.com
- Newsgroups: comp.compilers
- Subject: Re: Graph Coloring Problem
- Keywords: theory, books
- Message-ID: <92-11-031@comp.compilers>
- Date: 6 Nov 92 17:54:53 GMT
- Article-I.D.: comp.92-11-031
- References: <92-10-093@comp.compilers> <92-10-109@comp.compilers>
- Sender: compilers-sender@iecc.cambridge.ma.us
- Reply-To: kuzemcha@tartan.com
- Organization: Compilers Central
- Lines: 27
- Approved: compilers@iecc.cambridge.ma.us
-
- Richter@lrz.lrz-muenchen.dbp.de writes:
- >Anyhow, the general problem is NP-complete and you should not search for
- >optimal solutions. For good approximations, first study the literature.
- >Sorry, I have no references at hand.
-
- One good text is:
- "Computers and Intractability -
- A Guide to the Theory of NP-Completeness"
-
- Michael R. Garey / David S. Johnson
-
- published by: W.H. Freeman and Co., New York
- ISBN 0-7167-1045-5
-
- This book lists over 300 NP-Complete problems, giving references to the
- original transformation proofs. Of course, graph coloring problems are
- covered.
-
- There is also a section on bounding the performance of approximation
- algorithms, although no particular algorithms are given.
-
-
- Regards,
- Ed Kuzemchak
- --
- Send compilers articles to compilers@iecc.cambridge.ma.us or
- {ima | spdcc | world}!iecc!compilers. Meta-mail to compilers-request.
-