home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!stanford.edu!rutgers!jvnc.net!netnews.upenn.edu!sagi.wistar.upenn.edu
- From: weemba@sagi.wistar.upenn.edu (Matthew P Wiener)
- Newsgroups: sci.math
- Subject: Re: What a weird group!!!
- Message-ID: <93220@netnews.upenn.edu>
- Date: 15 Oct 92 15:04:00 GMT
- References: <1992Oct15.045312.13089@galois.mit.edu> <1bjnc4INN7hp@function.mps.ohio-state.edu>
- Sender: news@netnews.upenn.edu
- Reply-To: weemba@sagi.wistar.upenn.edu (Matthew P Wiener)
- Organization: The Wistar Institute of Anatomy and Biology
- Lines: 17
- Nntp-Posting-Host: sagi.wistar.upenn.edu
- In-reply-to: edgar@function.mps.ohio-state.edu (Gerald Edgar)
-
- In article <1bjnc4INN7hp@function.mps.ohio-state.edu>, edgar@function (Gerald Edgar) writes:
- >The construction uses the Axiom of Choice, so no one knows...
-
- >Or, before you tackle visualizing that, how about visualizing the
- >Stone-Cech compactification of the integers?
-
- As a doable warm up, given a function f, you can indeed visual a
- compactification that f extends to. Consider, for example, the
- function f:x|->=sin(1/x) on the open interval X=(0,1). X is
- homeomorphic to G, the graph of f. Consider G', the closure of
- G. It's G along with the interval [-1,1] on the y-axis. On G',
- f has an obvious continuous extension: the identity map. Now
- visual a compactification for two functions, and pretty soon the
- role of choice is reduced to the comforting belief that you can
- now just dotdotdot your way to Stone-Cech visual bliss.
- --
- -Matthew P Wiener (weemba@sagi.wistar.upenn.edu)
-