home *** CD-ROM | disk | FTP | other *** search
/ NetNews Usenet Archive 1992 #20 / NN_1992_20.iso / spool / sci / physics / 14458 < prev    next >
Encoding:
Internet Message Format  |  1992-09-10  |  1.9 KB

  1. Path: sparky!uunet!spool.mu.edu!agate!agate!matt
  2. From: matt@physics.berkeley.edu (Matt Austern)
  3. Newsgroups: sci.physics
  4. Subject: Re: What do we know about choice of groups?
  5. Date: 10 Sep 92 23:13:27
  6. Organization: Lawrence Berkeley Laboratory (Theoretical Physics Group)
  7. Lines: 28
  8. Message-ID: <MATT.92Sep10231327@physics.berkeley.edu>
  9. References: <1992Sep11.021551.1744@nuscc.nus.sg>
  10. Reply-To: matt@physics.berkeley.edu
  11. NNTP-Posting-Host: physics.berkeley.edu
  12. In-reply-to: matmcinn@nuscc.nus.sg's message of 11 Sep 92 02:15:51 GMT
  13.  
  14. In article <1992Sep11.021551.1744@nuscc.nus.sg> matmcinn@nuscc.nus.sg (Mcinnes B T (Dr)) writes:
  15.  
  16. > Suppose that the standard theory is right, and that the gauge group of
  17. > the world is "SU3xSU2xU1"  [actually S[ U2xU3 ] of course]. Then we will
  18. > have to understand why this particular group was chosen from infinitely
  19. > many others. The same problem arises, albeit less urgently, if GUTs are
  20. > correct: why SO[10]  [actually Spin[10] of course]  rather than SO[110]
  21. > ?
  22. > What ideas have been proposed to solve this problem? 
  23.  
  24. Well, one constraint that most theorists believe in is that a gauge
  25. theory has to be anomaly-free.  I really don't feel like explaining
  26. what that means just now; for the moment, let's just say that it is a
  27. technical property which is necessary for the theory to be
  28. renormalizable.  This excludes most possible gauge groups---still
  29. leaving an infinite number, but a much smaller infinity than without
  30. that constraint.  
  31.  
  32. We can hope that by imposing other physical principles, we might be
  33. left with fewer possibilites---ideally, only one.  String theorists
  34. have some optimism along those lines.
  35.  
  36.  
  37. --
  38. Matthew Austern                   Just keep yelling until you attract a
  39. (510) 644-2618                    crowd, then a constituency, a movement, a
  40. austern@lbl.bitnet                faction, an army!  If you don't have any
  41. matt@physics.berkeley.edu         solutions, become a part of the problem!
  42.