home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!haven.umd.edu!darwin.sura.net!wupost!usc!sdd.hp.com!uakari.primate.wisc.edu!usenet.coe.montana.edu!news.u.washington.edu!ogicse!das-news.harvard.edu!cantaloupe.srv.cs.cmu.edu!crabapple.srv.cs.cmu.edu!andrew.cmu.edu!vm0h+
- From: vm0h+@andrew.cmu.edu (Vincent J. Matsko)
- Newsgroups: sci.math
- Subject: Re: Tiling sphere by triangles (Re: 3 space terahedron-packing)
- Message-ID: <AegtD9O00Vp4EF8l8t@andrew.cmu.edu>
- Date: 13 Sep 92 11:17:29 GMT
- Article-I.D.: andrew.AegtD9O00Vp4EF8l8t
- References: <f#tng3h.spworley@netcom.com> <1992Sep11.182727.28044@nntp.uoregon.edu> <BuGKn5.Lnt@acsu.buffalo.edu>
- <BuHpJr.Frv@acsu.buffalo.edu>
- Organization: Doctoral student, Mathematics, Carnegie Mellon, Pittsburgh, PA
- Lines: 9
- In-Reply-To: <BuHpJr.Frv@acsu.buffalo.edu>
-
- One other method of tiling the sphere with conruent triangles is given
- any Archimedean solid, let the sphere be divided by all planes of
- symmetry for that solid. I think this will do.
-
- For a few references, try R. Buckminster Fuller's "Synergetics" (I and
- II), and Magnus Wenninger's "Spherical Models". I'm sure Coxeter also
- wrote something about such tilings.
-
- Vince Matsko
-