home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!sun-barr!cs.utexas.edu!uwm.edu!ogicse!das-news.harvard.edu!husc-news.harvard.edu!ramanujan!elkies
- From: elkies@ramanujan.harvard.edu (Noam Elkies)
- Newsgroups: sci.math
- Subject: Re: 2n = difference of primes?
- Message-ID: <1992Sep4.233520.15379@husc3.harvard.edu>
- Date: 5 Sep 92 03:35:19 GMT
- Article-I.D.: husc3.1992Sep4.233520.15379
- References: <92248.16510732WENPW@CMUVM.CSV.CMICH.EDU>
- Organization: Harvard Math Department
- Lines: 12
- Nntp-Posting-Host: ramanujan.harvard.edu
-
- In article <92248.16510732WENPW@CMUVM.CSV.CMICH.EDU>
- 32WENPW@CMUVM.CSV.CMICH.EDU writes:
- >Question: Is it true that every [even] positive integer 2n is the
- >difference of some pair of primes?
- >(2 = 5-3, 4 = 7-3, 6 = 11-5, 8 = 13-5, 10 = 13-3, ...?)
-
- Yes. Or rather, it is next-to-certainly true. But nobody at present
- knows how to prove it for even one value of n. For instance (n=1) the
- twin-prime conjecture is still open.
-
- --Noam D. Elkies (elkies@zariski.harvard.edu)
- Dept. of Mathematics, Harvard University
-