home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!pipex!unipalm!uknet!pavo.csi.cam.ac.uk!camcus!gjm11
- From: gjm11@cus.cam.ac.uk (G.J. McCaughan)
- Newsgroups: sci.math
- Subject: Re: Wanted: Numerical method
- Message-ID: <1992Sep4.222852.23265@infodev.cam.ac.uk>
- Date: 4 Sep 92 22:28:52 GMT
- References: <ULF.LUNDE.92Sep4095830@grim.kvatro.no>
- Sender: news@infodev.cam.ac.uk (USENET news)
- Distribution: sci
- Organization: U of Cambridge, England
- Lines: 21
- Nntp-Posting-Host: bootes.cus.cam.ac.uk
-
- In article <ULF.LUNDE.92Sep4095830@grim.kvatro.no>, Ulf.Lunde@kvatro.no (Ulf Lunde) writes:
- > Given a set of numbers, say {47, 79, 167, 223, 359, 439, 727, 839, 3 967} or
- > {383, 467, 659, 883, 1 583, 2 099, 2 287, 2 687, 3 119, 3 583}, how does one go
- > about in finding a smooth (polynomial) function f(x) which outputs those
- > numbers for different (not necessarily neighbouring) integer values of x?
- > Preferably a polynomial of low order and with a positive first coefficient.
- > E.g., given the set of numbers:
- >
- > {8 297 644 387, 12 478 210 777, 16 658 777 167, 29 200 476 337}
- >
- > I would like the procedure to yield:
- >
- > f(x) = 4180566390x + 4117077997.
-
- I think you'd better define your problem a little more carefully. An alternative
- solution in the last case you mention is: f(x) = x.
-
- In general there is some N such that f(x)=x+N will do.
-
- What do you need this for? I bet the answers I just mentioned don't solve the
- "real" problem...
-