home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!haven.umd.edu!darwin.sura.net!wupost!usc!elroy.jpl.nasa.gov!news.claremont.edu!ucivax!news.service.uci.edu!beckman.com!dn66!a_rubin
- Newsgroups: sci.math.symbolic
- Subject: Re: ode solver, different results from different packages
- Message-ID: <a_rubin.715544670@dn66>
- From: a_rubin@dsg4.dse.beckman.com (Arthur Rubin)
- Date: 3 Sep 92 18:24:30 GMT
- References: <1992Sep3.102037.20539@news.Hawaii.Edu>
- Nntp-Posting-Host: dn66.dse.beckman.com
- Lines: 39
-
- In <1992Sep3.102037.20539@news.Hawaii.Edu> qhuang@wiliki.eng.hawaii.edu (Qiming Huang) writes:
-
- >Hi, I am trying to learn these different symbolic math packages
- >such as mathmatica, mapleV, and macsyma. I tested one example
- >listed on the macsyma manual for ordinary differential equations
- >which writes as
-
- > x*dy/dx +a*x*y^2+2*y+b*x=0
-
- >the solution given by macsyma is
- >
- > (2 a sqrt(b) x)/sqrt(-a)
- > y=((2 %c a b x - 2 %c sqrt(-a) sqrt(b)) %e
-
- > (2 a sqrt(b) x)/sqrt(-a)
- >+ sqrt(-a) a sqrt(b) x -a)/(2 %c sqrt(-a) a sqrt(b) x %e
- >
- > 2
- >+ a x)
-
-
- Of course, the correct answer is:
-
- if a=0, y = -b x /3 + %c / x^2
-
- if a!=0, y = -1/(a x) + l/a produces the equation
-
- dl/dx + l^2 + a b = 0,
-
- which Mathematica also cannot solve, but "clearly" has solutions
-
- (a b < 0) sqrt(-a b) tanh ( sqrt(-a b) (x + %c) ) (including c=+/- infinity)
- (a b = 0) 1/(x + %c)
- (a b > 0) sqrt(a b) tan ( sqrt(a b) (x + %c) )
- --
- Arthur L. Rubin: a_rubin@dsg4.dse.beckman.com (work) Beckman Instruments/Brea
- 216-5888@mcimail.com 70707.453@compuserve.com arthur@pnet01.cts.com (personal)
- My opinions are my own, and do not represent those of my employer.
- My interaction with our news system is unstable; if you want to be sure I see a post, mail it.
-