home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!ogicse!das-news.harvard.edu!husc-news.harvard.edu!ramanujan!elkies
- From: elkies@ramanujan.harvard.edu (Noam Elkies)
- Newsgroups: sci.math
- Subject: Corrections Re: Abel's proof of the insolubility of the quintic
- Message-ID: <1992Sep4.121746.15366@husc3.harvard.edu>
- Date: 4 Sep 92 16:17:45 GMT
- Article-I.D.: husc3.1992Sep4.121746.15366
- References: <1992Sep3.122450.15337@husc3.harvard.edu> <87849@netnews.upenn.edu> <1992Sep4.120349.15365@husc3.harvard.edu>
- Organization: Harvard Math Department
- Lines: 16
- Nntp-Posting-Host: ramanujan.harvard.edu
-
- In article <1992Sep4.120349.15365@husc3.harvard.edu> I wrote:
- >The identity and simple transpositions together give a union of
- >conjugacy classes of size (n^2+n+2)/2,
- ^^^
- of course this should read (n^2-n+2)/2. (typo)
-
- >which divides |A_n|=n!/2 at least for n=11,18,27,37,38,46.
-
- These values are correct. Unfortunately there are no simple
- transpositions in A_n. So let's use 3-cycles instead; then
- instead of (n^2-n+2)/2 we have (n^3-3n^2+2n+3)/3. Here
- the first sufficiently smooth value occurs at n=68, when
- (n^3-3n^2+2n-3)/3 = 100233 = 3*3*7*37*43.
-
- --Noam D. Elkies (elkies@zariski.harvard.edu)
- Dept. of Mathematics, Harvard University
-