home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!sun-barr!cs.utexas.edu!swrinde!elroy.jpl.nasa.gov!news.claremont.edu!ucivax!news.service.uci.edu!beckman.com!dn66!a_rubin
- From: a_rubin@dsg4.dse.beckman.com (Arthur Rubin)
- Newsgroups: sci.math
- Subject: Re: Abel's proof of the insolubility of the quint
- Message-ID: <a_rubin.715551216@dn66>
- Date: 3 Sep 92 20:13:36 GMT
- References: <1992Sep2.204229.12330@news.cs.brandeis.edu>
- <MARTIN.92Sep2212731@lyra.cis.umassd.edu> <87834@netnews.upenn.edu>
- <1992Sep3.122450.15337@husc3.harvard.edu> <87849@netnews.upenn.edu>
- Lines: 23
- Nntp-Posting-Host: dn66.dse.beckman.com
-
- In <87849@netnews.upenn.edu> weemba@sagi.wistar.upenn.edu (Matthew P Wiener) writes:
-
- >In article <1992Sep3.122450.15337@husc3.harvard.edu>, elkies@ramanujan (Noam Elkies) writes:
- >>>I came across the proof in Rotman: identify the conjugacy classes of
- >>>A_5, and notice the impossibility of any of them forming a partition
- >>>for a size that non-trivially divides 60.
-
- >>This nice proof is reasonably well-known, but can one get a proof
- >>of the simplicity of all A_n (n>4) from such ideas?
-
- >I don't think so, although I don't know of a particular A_n where the
- >partition is possible, of course without forming a subgroup. Rotman
- >redoes the partition proof for A_6, and then uses the result for A_6
- >to prove the result for A_n, n>6.
-
- I think it would be simpler to show that: the group generated by any
- conjugacy class includes a specific element ( (123) (12345) ?), and to
- show that all conjugates of that generate A_n.
- --
- Arthur L. Rubin: a_rubin@dsg4.dse.beckman.com (work) Beckman Instruments/Brea
- 216-5888@mcimail.com 70707.453@compuserve.com arthur@pnet01.cts.com (personal)
- My opinions are my own, and do not represent those of my employer.
- My interaction with our news system is unstable; please mail anything important.
-