home *** CD-ROM | disk | FTP | other *** search
- Organization: Mathematics, Carnegie Mellon, Pittsburgh, PA
- Path: sparky!uunet!cis.ohio-state.edu!news.sei.cmu.edu!fs7.ece.cmu.edu!crabapple.srv.cs.cmu.edu!andrew.cmu.edu!ow0a+
- Newsgroups: sci.math
- Message-ID: <8edKLhW00iUyM8OahX@andrew.cmu.edu>
- Date: Wed, 2 Sep 1992 21:10:05 -0400
- From: Oswald Wyler <ow0a+@andrew.cmu.edu>
- Subject: Circular logic (was: Re: p prime, p|ab ...)
- Lines: 9
-
- Get real, all you cicular reasoners. Observe:
- Theorem. An integral domain D has unique factorization into irreducibles
- iff D satisfies:
- (i) Every non-zero element of D is a product of irreducibles.
- (ii) If p is irreducible and p|ab, then p|a or p|d.
- p irreducible means: p not zero, not divisor of 1, and if p = uv, then u
- or v divides 1.
- So how do you prove unique factorization before the p|ab business?
-
-