home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!sun-barr!ames!agate!iat.holonet.net!uupsi!psinntp!kepler1!andrew
- From: andrew@rentec.com (Andrew Mullhaupt)
- Newsgroups: sci.math
- Subject: Re: Polygon point enclosure
- Message-ID: <1218@kepler1.rentec.com>
- Date: 31 Aug 92 00:33:20 GMT
- References: <1992Aug26.235700.16224@infodev.cam.ac.uk> <thompson.714934114@daphne.socsci.umn.edu> <1992Aug27.180024.2843@linus.mitre.org>
- Organization: Renaissance Technologies Corp., Setauket, NY.
- Lines: 16
-
- In article <1992Aug27.180024.2843@linus.mitre.org> bs@gauss.mitre.org (Robert D. Silverman) writes:
- >In article <thompson.714934114@daphne.socsci.umn.edu> thompson@atlas.socsci.umn.edu writes:
- >:gjm11@cus.cam.ac.uk (G.J. McCaughan) writes:
- >:
- >:>Well, here's one approach. Imagine a ray (=half-line) coming off from the point
- >:>in some direction. Count how many of the sides of the polygon it goes through.
-
- >... This requires computing O(N) equations and intersections.
-
- Not hardly. You can eliminate a lot of possible edges from consideration by
- using a half ray parallel to the x-axis and sorting the endpoints of the
- edges by y-coordinate. It's pretty typical to do even fancier stuff like using
- segment trees, (see for example Preperata and Shamos).
-
- Later,
- Andrew Mullhaupt
-