home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!usc!sdd.hp.com!caen!destroyer!ubc-cs!unixg.ubc.ca!unixg.ubc.ca!israel
- From: israel@unixg.ubc.ca (Robert B. Israel)
- Subject: Re: x 2^x = 2^n ?
- Message-ID: <israel.714986049@unixg.ubc.ca>
- Sender: news@unixg.ubc.ca (Usenet News Maintenance)
- Nntp-Posting-Host: unixg.ubc.ca
- Organization: University of British Columbia, Vancouver, B.C., Canada
- References: <17gnuqINNr7k@darkstar.UCSC.EDU> <israel.714951978@unixg.ubc.ca>
- Date: Fri, 28 Aug 1992 07:14:09 GMT
- Lines: 65
-
- In <israel.714951978@unixg.ubc.ca> israel@unixg.ubc.ca (Robert B. Israel) writes:
-
- >In <17gnuqINNr7k@darkstar.UCSC.EDU> soeren@cse.ucsc.edu (Soren Soe) writes:
-
- >>Can anyone tell me what `x' is in this equation:
-
- >> x 2^x = 2^n
-
- >>Is there a general solution, or do I have to approximate `x' to something like
- >>x = n - lg n + a_little_more ?
- >>In fact I can do with an approximation to x, iff
- >> floor(x) <= app(x) <= x
-
- >>I need the "floor" of `x' to solve the following summation, where k
- >>would be equal to floor(x):
-
- >> i=n-1
- >> SUM min(2^i, 2^2^(n-i))
- >> i=0
-
- >> i=k i=n-1
- >> = SUM 2^i + SUM 2^2^(n-i)
- >> i=0 i=k+1
-
- >>--soeren
-
- >>Soren Soe,
- >>soeren@ce.ucsc.edu
-
- >I assume n is a positive integer. For n = 1, x = 1, so suppose n >= 2.
-
- >Write n = 2^m k where m is a positive integer and 1 <= k < 2, i.e.
- >m = floor(lg n).
-
- >Let x1 = n - m - 1. Then x1 2^x1 < n 2^x1 = k 2^(n-1) < 2^n. So x1 < x.
-
- >Let x2 = n - m + 1. Then x2 2^x2 = 2^(n+1) k x2/n >= 2^(n+1) (1 - (m - 1)/n)
- > >= 2^(n+1) (1 - (m-1) 2^(-m)) > 2^n
-
- >since m - 1 < 2^(m-1) for all m. So x > x2. Thus floor(x) is either
- >x3 = n - m or x1 = n - m - 1.
-
- >Now x3 2^x3 = (n-m) 2^(n-m) = (n-m)k/n 2^n. To have floor(x) = x3 we need
- >n <= (n-m) k = (n-m) n 2^(-m), i.e. n >= 2^m + m. Thus we conclude that
-
- Oops! Reverse those inequalities, we need n <= 2^m + m.
-
- >floor(x) = n - m - 1 if 2^m <= n < 2^m + m for some m
- >floor(x) = n - m if 2^m + m <= n < 2^(m+1).
-
- So it's really:
- floor(x) = n - m if 2^m <= n <= 2^m + m
- floor(x) = n - m - 1 if 2^m + m < n < 2^(m+1).
-
- >
- >--
- >Robert Israel israel@math.ubc.ca
- >Department of Mathematics or israel@unixg.ubc.ca
- >University of British Columbia
- >Vancouver, BC, Canada V6T 1Y4
- --
- Robert Israel israel@math.ubc.ca
- Department of Mathematics or israel@unixg.ubc.ca
- University of British Columbia
- Vancouver, BC, Canada V6T 1Y4
-