home *** CD-ROM | disk | FTP | other *** search
/ NetNews Usenet Archive 1992 #18 / NN_1992_18.iso / spool / sci / math / 10515 < prev    next >
Encoding:
Internet Message Format  |  1992-08-22  |  12.6 KB

  1. Path: sparky!uunet!wupost!waikato.ac.nz!canterbury.ac.nz!math!wft
  2. Newsgroups: sci.math
  3. Subject: [0,1] homeomorphic to most of [0,1]^2
  4. Message-ID: <1992Aug23.135123.466@csc.canterbury.ac.nz>
  5. From: wft@math.canterbury.ac.nz (Bill Taylor)
  6. Date: 23 Aug 92 13:51:21 +1200
  7. Distribution: world
  8. Organization: Department of Mathematics, University of Canterbury
  9. Nntp-Posting-Host: math.canterbury.ac.nz
  10. Lines: 196
  11.  
  12. There was a flurry of concern in sci.math a week or two ago, as to whether
  13. or not there was a bi-continuous bijection (i.e. a homeomorphism) between
  14. [0,1] and [0,1]^2 . Several posters wrote in with their conviction that
  15. such *did* exist, probably confusing vaguely remembered classic examples such
  16. as Cantor's non-continuous bijection, and Peano's continuous many-1 mapping.
  17.  
  18. There were some excellent replies, ranging from the esoteric, to pointing
  19. out the obvious such as that [0,1] could be disconnected by removing a
  20. single point, whereas  [0,1]^2  couldn't, so they could not possibly be
  21. homeomorphic. Hopefully they have killed off this potential piece of
  22. mathematical folklore.
  23.  
  24.  
  25. During the course of the discussion, I mentioned in passing that......
  26.  
  27. > there *is* a homeomorphism from the unit line to "most of" the unit square.
  28. > i.e. so that the image in the unit square has measure arbitrarily close to 1 .
  29.  
  30. An "almost-homeomorphism", one might say, from [0,1] to [0,1]^2 .
  31.  
  32. I have been asked (by email) to substantiate this claim. Being unable to find a
  33. reference for it, I have reconstructed and asciied-up a standard example as it
  34. was shown to me long ago.  I thought I would post it here, in case there should
  35. be some others who would like to see such an example.
  36.  
  37.  
  38. Though it sounds amazing at first, the existence of an almost-homeomorphism
  39. will come as no surprise to topologists, who know that there is almost no
  40. connection between topology and measure theory. For instance there are
  41. dense sets of measure zero (the rationals), and nowhere-dense sets of
  42. measure  1-e , in the unit interval, for arbitrarily small positive  e .
  43.  
  44. These last could be called "thick Cantor sets". A thick Cantor set is
  45. constructed by removing central intervals from [0,1] and its subsequent
  46. sub-intervals, NOT all of length 1/3 of their intervals, as in the standard
  47. Cantor set, but of proportional lengths  e, (e^2)/2, (e^3)/4  etc, so that
  48. the measure of the remnant is  > 1-e-e^2-e^3-... > 1-2e . The intervals removed
  49. can be open, leaving a closed Cantor-like set; or closed, leaving the
  50. "quasi-interior" (i.e. no internal end-points) of one; having the same measure.
  51.  
  52. The almost-homeomorphism I display, will have as its range, a subset of [0,1]^2
  53. consisting (mostly) of the cross-product with itself, of one of these
  54. quasi-interior-of-thick-Cantor-sets.
  55. So this range will have measure very close to 1.
  56.  
  57. Our first step is to create the set [0,1]^2 from which countably many
  58. cross-shaped sections have been removed, but crosses of decreasingly small
  59. measure. I believe this remnant set is sometimes called "Sierpinski dust".
  60.                                                          ~~~~~~~~~~~~~~~
  61. It is totally disconnected, nowhere dense, but of very large measure.
  62. I illustrate it here....
  63.  
  64.    ------------------------------------------------------------------------
  65.    |      ||      | |      ||      |      |      ||      | |      ||      |
  66.    |  +   ||  +   | |  +   ||  +   |      |  +   ||  +   | |  +   ||  +   |
  67.    |      ||      | |      ||      |      |      ||      | |      ||      |
  68.    |======||======| |======||======|      |======||======| |======||======|
  69.    |      ||      | |      ||      |      |      ||      | |      ||      |
  70.    |  +   ||  +   | |  +   ||  +   |      |  +   ||  +   | |  +   ||  +   |
  71.    |      ||      | |      ||      |      |      ||      | |      ||      |
  72.    ---------------' `---------------      ---------------' `---------------
  73.    |                               |      |                               |
  74.    ---------------. .---------------      ---------------. .---------------
  75.    |      ||      | |      ||      |      |      ||      | |      ||      |
  76.    |  +   ||  +   | |  +   ||  +   |      |  +   ||  +   | |  +   ||  +   |
  77.    |      ||      | |      ||      |      |      ||      | |      ||      |
  78.    |======||======| |======||======|      |======||======| |======||======|
  79.    |      ||      | |      ||      |      |      ||      | |      ||      |
  80.    |  +   ||  +   | |  +   ||  +   |      |  +   ||  +   | |  +   ||  +   |
  81.    |      ||      | |      ||      |      |      ||      | |      ||      |
  82.    ---------------------------------      ---------------------------------
  83.    |                                                                      |
  84.    |                    area  e  removed in this central cross            |
  85.    |                                                                      |
  86.    ---------------------------------      ---------------------------------
  87.    |      ||      | |      ||      |      |      ||      | |      ||      |
  88.    |  +   ||  +   | |  +   ||  +   |      |  +   ||  +   | |  +   ||  +   |
  89.    |      ||      | |      ||      |      |      ||      | |      ||      |
  90.    |======||======| |======||======|      |======||======| |======||======|
  91.    |      ||      | |      ||      |      |      ||      | |      ||      |
  92.    |  +   ||  +   | |  +   ||  +   |      |  +   ||  +   | |  +   ||  +   |
  93.    |      ||      | |      ||      |      |      ||      | |      ||      |
  94.    ---------------' `---------------      ---------------' `---------------
  95.    |                               |      |   area (e^2)/4 removed here   |
  96.    ---------------. .---------------      ---------------. .---------------
  97.    |      ||      | |      ||      |      |      ||      | |      ||      |
  98.    |  +   ||  +   | |  +   ||  +   |      |  +   ||  +   | |  +   ||  +   |
  99.    |      ||      | |      ||      |      |      ||      | |      ||      |
  100.    |======||======| |======||======|      |======||======| |=(e^3)/16==removed
  101.    |      ||      | |      ||      |      |      ||      | |      ||      |
  102.    |  +   ||  +   | |  +   ||  +   |      |  +   ||  +   | |  +   || etc. |
  103.    |      ||      | |      ||      |      |      ||      | |      ||      |
  104.    ------------------------------------------------------------------------
  105.  
  106. We will draw a continuous non-self-intersecting image of [0,1] in the unit square,
  107. that covers this Sierpinski dust.
  108.  
  109. First join the 4 large subsquares with straight line segments as shown...
  110.  
  111.    -------------------------------------------------------------------
  112.    |                             |      |                            |
  113.    |                             |      |      ***** *               |
  114.    |            ******           |      |     *       *              |
  115.    |           *      *          |      |    *         *             |
  116.    |          *        *         |      |    *          *            |
  117.    |         *          *        |      |    *           *           |
  118.    |        *            *       |      |   *            *           |
  119.    |        *             ********------****             *           |
  120.    |        *                    |      |               *            |
  121.    |         *                   |      |              *             |
  122.    |          *                  |      |              *             |
  123.    |           *                 |      |              *             |
  124.    |            *                |      |              *             |
  125.    |             *               |      |              *             |
  126.    |             *               |      |              *             |
  127.    --------------*----------------      ---------------*--------------
  128.    |            1                                      |             |
  129.    |                                                   |             |
  130.    |            0                                     B|             |
  131.    --------------*----------------      ---------------*--------------
  132.    |             *               |      |              *             |
  133.    |             *               |      |              *             |
  134.    |             *               |      |               *            |
  135.    |            *                |      |               *            |
  136.    |           *                 |      |               *            |
  137.    |          *                  |      |              *             |
  138.    |          *                  |     A|             *              |
  139.    |           *       ***********------********     *               |
  140.    |            *     *          |      |       *****                |
  141.    |             *****           |      |                            |
  142.    |                             |      |                            |
  143.    |                             |      |                            |
  144.    |                             |      |                            |
  145.    |                             |      |                            |
  146.    |                             |      |                            |
  147.    -------------------------------------------------------------------
  148.  
  149. The dotted lines show where further connections still have to be made.
  150. "0" and "1" label the ends of our image-set. Note that the three solid lines
  151. form a fixed part of the final curve; they will not be overwritten later
  152. (unlike the Peano example).     Points "A" & "B" appear again below.
  153.  
  154. To define the curve inside each quarter, join up as shown for the magnified bottom
  155. right quarter...   (again, the dotted sections to be filled later)  |
  156.                                                                     |
  157.                                                                     |
  158.                                     B                               |
  159.        -----------------------------*-------------------------------|
  160.        |                         |  |  |                            |
  161.        |                         |  |  |                            |
  162.        |                         |  |  |                            |
  163.        |                         | /   |                            |
  164.        |                         |/    |                            |
  165.        |              ************     **********                   |
  166.        |             *           |    /|         *                  |
  167.        |            *            |   / |          *                 |
  168.        |           *             |  /  |           *                |
  169.        |           *             |  |  |            *               |
  170.        |           *             |  |  |             *              |
  171.        ------------*-------------   |   --------------*-------------|
  172.        |            \               |                 |             |
  173.      A *----------\  \--------------/                 |             |
  174.        |           \                                  |             |
  175.        -------------*------------       --------------*-------------|
  176.        |            *            |     |              *             |
  177.        |            *            |     |              *             |
  178.        |            *            |     |              *             |
  179.        |            *            |     |              *             |
  180.        |            *            |     |              *             |
  181.        |             *************-----***************              |
  182.        |                         |     |                            |
  183.        |                         |     |                            |
  184.        |                         |     |                            |
  185.        |                         |     |                            |
  186.        |                         |     |                            |
  187.  -------------------------------------------------------------------|
  188.  
  189. The other three quarters are to have internal joins in a similar way.
  190.  
  191. Then make internal joins in the 16 size-(1/16) subsquares in a similar way
  192. to this; and so on in reducing recursive fashion; countably many times.
  193.  
  194. The resulting curve is continuous and non-self-intersecting (i.e. 1-1),
  195. though both of these facts need a little proof. The curve is made up of
  196. countably many straight line sections, of total (areal) measure zero,
  197. and an uncountable number of "connecting" limit points, the Sierpinski dust,
  198. of measure close to 1.
  199.                              Q.E.D.
  200.  
  201. -------------------------------------------------------------------------------
  202.             Bill Taylor              wft@math.canterbury.ac.nz
  203. -------------------------------------------------------------------------------
  204.  Free will - the result of chaotic amplification of quantum events in the brain.
  205. Galaxies - the result of chaotic amplification of quantum events in the big bang.
  206. --------------------------------------------------------------------------------
  207.  
  208.