home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!mcsun!Germany.EU.net!ecrc!acrab20!jeanmarc
- From: jeanmarc@ecrc.de (Jean-Marc Andreoli)
- Subject: Re: int(x*log(x)*((1-x)^n), x=0..1)
- Message-ID: <1992Aug21.100918.29780@ecrc.de>
- Sender: news@ecrc.de
- Reply-To: jeanmarc@ecrc.de
- Organization: European Computer industry Research Centre GmbH.
- References: <a_rubin.714332240@dn66>
- Date: Fri, 21 Aug 1992 10:09:18 GMT
- Lines: 35
-
- In article 714332240@dn66, a_rubin@dsg4.dse.beckman.com (Arthur Rubin) writes:
- >In <dld.714296391@bruce.cs.monash.edu.au> dld@cs.monash.edu.au (David L Dowe) writes:
- >
- >>Let I(n) = int(x*log(x)*((1-x)^n), x=0..1);
- >>to use Maple's notation. n is a positive integer. log is ln .
- >
- >>I seek as simple an expression as possible or, that failing, as rapidly
- >>converging an expression as possible for I(n).
- >
- >Futher simplification shows:
- >
- > n^2+n-1 (1 + 1/2 + ... + 1/n)
- >I(n) = --------------- - ---------------------,
- > (n+1)^2 (n+2)^2 (n+1) (n+2)
- >
- >
- >which can readily be proved by induction, noting the the integral for
- >
- >(n+1) I(n) - (n+3) I(n+1) can be written in closed form.
- >
- >--
- >Arthur L. Rubin: a_rubin@dsg4.dse.beckman.com (work) Beckman Instruments/Brea
- >216-5888@mcimail.com 70707.453@compuserve.com arthur@pnet01.cts.com (personal)
- >My opinions are my own, and do not represent those of my employer.
- >My interaction with our news system is unstable; if you want to be sure I see a post, mail it.
-
- Further simplification shows
-
- 1/2 + ..... + 1/(n+2)
- I(n) = - -----------------------
- (n+1)(n+2)
-
-
- ---
-
-