home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!ogicse!plains!news.u.washington.edu!pythagoras.math.washington.edu!petry
- From: petry@pythagoras.math.washington.edu (David Petry)
- Newsgroups: sci.math
- Subject: Re: Still another problem.
- Message-ID: <1992Aug19.230928.17072@u.washington.edu>
- Date: 19 Aug 92 23:09:28 GMT
- Article-I.D.: u.1992Aug19.230928.17072
- References: <1992Aug12.075304.28486@newssrv.edvz.univie.ac.at> <1992Aug14.142149.16686@mcs.drexel.edu> <mgh3-170892130137@math26647.math.cwru.edu>
- Sender: news@u.washington.edu (USENET News System)
- Organization: University of Washington, Mathematics, Seattle
- Lines: 25
-
- >In article <1992Aug14.142149.16686@mcs.drexel.edu>, dmagagno@mcs.drexel.edu
- >(David Magagnosc) wrote:
- >>
- >> While we're at it, prove that the following sum is always an
- >> integer:
- >>
- >> n n n n
- >> 1 2 3 4
- >> -- + -- + -- + -- + ...
- >> 1 2 3 4
- >> 2 2 2 2
- >>
- >> and find reasonable generalizations.
-
-
- While we're at it, denote the sum with exponent n by f(n), and prove
-
- f(n+p) = f(n+1) (mod p), for all n >= 0, and all primes p.
-
-
- For more fun, show that f(n) ~= n!/(log2)^(n+1) for large n.
-
-
- David Petry
-
-