home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!elroy.jpl.nasa.gov!sdd.hp.com!mips!darwin.sura.net!jvnc.net!netnews.upenn.edu!netnews.noc.drexel.edu!king.mcs.drexel.edu!dmagagno
- From: dmagagno@mcs.drexel.edu (David Magagnosc)
- Newsgroups: sci.math
- Subject: A combinatorial question
- Message-ID: <1992Aug14.142736.16774@mcs.drexel.edu>
- Date: 14 Aug 92 14:27:36 GMT
- Organization: Drexel University, Dept. of Math. and Comp. Sci.
- Lines: 14
-
- For fixed n, let f and g be a pair of functions from
- {1,2,...,n} to itself (not necessarily bijections). Define
- a distinguished pair to be a pair (i,j) for which f(i)=j and g(j)=i.
-
- Question: for how many pairs of functions (from the n^(2n) such pairs)
- are there exactly k distinguished pairs?
-
- I'd be curious about closed expressions, generating functions,
- asymptotics, ..., references, anything.
-
- D. Magagnosc
- --
- 496620796F752063616E207265616420746869732C20796F752063616E206265636F6D65206120
- 636F6D70757465722070726F6772616D6D657220616E6420676574206120676F6F64206A6F622E
-