home *** CD-ROM | disk | FTP | other *** search
/ NetNews Usenet Archive 1992 #18 / NN_1992_18.iso / spool / sci / math / 10169 < prev    next >
Encoding:
Text File  |  1992-08-12  |  1.3 KB  |  35 lines

  1. Path: sparky!uunet!olivea!sgigate!odin!mips!sdd.hp.com!cs.utexas.edu!uwm.edu!zazen!doug.cae.wisc.edu!umn.edu!noc.msc.net!uc.msc.edu!shamash!ems!ems.cdc.com!mstemper
  2. From: mstemper@ems.cdc.com (Michael Stemper)
  3. Newsgroups: sci.math
  4. Subject: Prime conjecture
  5. Message-ID: <18990@nntp_server.ems.cdc.com>
  6. Date: 12 Aug 92 17:17:35 GMT
  7. References: <Aug.11.04.02.28.1992.3070@remus.rutgers.edu> <1992Aug11.162953.13961@uwm.edu>
  8. Sender: sys@ems.ems.cdc.com
  9. Reply-To: mstemper@ems.cdc.com
  10. Organization: Empros Systems International, a division of Ceridian
  11. Lines: 21
  12. Nntp-Posting-Host: kirk.ems.cdc.com
  13.  
  14. In article <1992Aug11.162953.13961@uwm.edu>, radcliff@csd4.csd.uwm.edu (David G Radcliffe) writes:
  15. |> 
  16. |>    Conjecture:  There exists a k > 0 so that p + k is prime 
  17. |>                 for infinitely many primes p.
  18. |> 
  19. |> Does anybody know the status of the this conjecture?
  20.  
  21. I believe that
  22.   There exist infinitely many primes p
  23.   Such that p+2 is prime
  24. has been proven, which would prove this conjecture by showing k=2.
  25.  
  26. Related questions: Now that we know that there exists a k, are there
  27. other k's that satisfy this condition? If so, is there a largest k
  28. that satisfies this condition?
  29.  
  30. -- 
  31. #include <Standard_Disclaimer.h>
  32. Michael F. Stemper
  33. Power Systems Consultant
  34. mstemper@ems.cdc.com
  35.