home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!mcsun!Germany.EU.net!news.netmbx.de!zrz.tu-berlin.de!math.fu-berlin.de!unidus.rz.uni-duesseldorf.de!convex.rz.uni-duesseldorf.de!heisen
- From: heisen@convex.rz.uni-duesseldorf.de (Henner Eisen)
- Subject: Re: Is Card(R)=Card(R^2)?
- Message-ID: <1992Aug13.000928.12631@unidus.rz.uni-duesseldorf.de>
- Sender: heisen@numerik.uni-duesseldforf.de
- Organization: Heinrich-Heine-Universitaet Duesseldorf
- References: <1992Aug12.102140.5231@nntp.hut.fi>
- Date: Thu, 13 Aug 1992 00:09:28 GMT
- Lines: 25
-
- In article <1992Aug12.102140.5231@nntp.hut.fi> samu@lammio.hut.fi writes:
- >I have been wondering... It seems first that there are more pairs of
- >real numbers than real numbers, but is it really so? And if not, I would
- >like to see a bijective mapping f:R->R^2. ...
-
- Such mappings exist! To construct a mapping f(x,y) = z choose a
- unique decimal representation of x and y and then merge the digits.
-
- i.E.:
- x = 1 0 0 2. 7 1 8 2 8 2 . . . . . .
- y = 3 0 3 .1 4 1 5 9 3 . . . . . .
-
- z = 1300032.174118529832............
-
- This will be bijective for non-negative real numbers. In order to obtain a
- bijective mapping R <-> R^2 this has to be combined with a bijection
- which maps real numbers to non-negative real numbers (right now, I
- don't remeber by heart how this is done, but it is possible).
-
- ------------------
- Henner Eisen
-
-
-
-
-