home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!dtix!darwin.sura.net!Sirius.dfn.de!fauern!fauna!cip.informatik.uni-erlangen.de!jnjohann
- From: jnjohann@cip.informatik.uni-erlangen.de (Jan Johannsen)
- Newsgroups: sci.logic
- Subject: Re: Presburger arithmetic axiomatization
- Message-ID: <Bt4J2E.Mz0@immd4.informatik.uni-erlangen.de>
- Date: 17 Aug 92 10:42:14 GMT
- References: <1992Aug13.201939.6369@cs.sfu.ca>
- Sender: news@immd4.informatik.uni-erlangen.de
- Organization: CSD., University of Erlangen
- Lines: 31
-
- jamie@cs.sfu.ca (Jamie Andrews) writes:
-
- > Where can I expect to find easily a precise and elegant
- >axiomatization of Presburger arithmetic? (I know it's
- >"arithmetic without multiplication" and I can think of some
- >horrible axiomatizations; I wanted to find a nice one.)
-
- In ZML 12 (1966), pp. 131 - 168, H. Apelt gives the following
- axiom system for Presburger Arithmetic:
-
- a+b = b+a
- a+(b+c) = (a+b)+c
- \exists b ( a+b = c \or c+b = a )
- c+a = c+b \to a=b
- a+b = 1 \to ( a=1 \or b=1 )
- a+b = 0 \to b=0
- \not 0=1
-
- plus the schema
-
- \exists b ( b+...+b = a \or b+...+b+1 = a \or ... \or b+...+b+1+...+1 = a )
- p b's p b's p b's p-1 1's
-
- for every prime number p.
-
- >thanks
- >--Jamie.
-
- No matter
-
- Jan Johannsen jnjohann@immd1.informatik.uni-erlangen.de
-