home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: comp.sources.hp48
- Path: sparky!uunet!seq!spell
- From: John Meissner <meissner%triton.unm.edu@lynx.unm.edu>
- Subject: v06i021: laplace_jm - Laplace v2.0, Part01/01
- Message-ID: <1992Aug13.015856.1208@seq.uncwil.edu>
- Followup-To: comp.sys.hp48
- Sender: spell@seq.uncwil.edu (Chris Spell)
- Organization: University of New Mexico, Albuquerque
- Date: Thu, 13 Aug 1992 01:58:56 GMT
- Approved: spell@seq.uncwil.edu
- Lines: 688
-
- Checksum: 662440219 (verify with brik -cv)
- Submitted-by: John Meissner <meissner%triton.unm.edu@lynx.unm.edu>
- Posting-number: Volume 6, Issue 21
- Archive-name: laplace_jm/part01
-
-
- BEGIN_DOC laplace.doc
- These routines are an upgrade to my previous Laplace
- transform utility. Many of the new programs have been rewritten
- in SYSTEM-RPL. As always, system RPL can cause some unpredictable
- things to happen -- including MEMORY LOST errors.
- I have strived to do my best to make the routines safe, but I
- am new to syystem-RPL programming and there are undoubtedly some bugs
- still left in the routines. I am posting these routine to comp.sys.hp48
- so that these bugs can be tested and corrected over the next few weeks
- so that I can release some kind of a final product.
- I have had no reports of memory lost errors or and serious mishaps
- of any kind since the pre beta-test release about a month ago.. So,
- hopefully, these routines are safe. As alaways, report any bugs/sugestions
- to me as soon as you see them.
-
- Summary of changes from beta release:
- 1) You can now define your own independant variable.
- 2) RT-> gives better results.
- 3) A few other quirks have been fixed.
-
- Summary of changes in these routines:
-
- 1) system-RPL, these routines run 5 to 10 times faster.
- 2) Remove flags [0-5] usage.
- 3) Fixed bugs in & and RT-> that caused incorrect transforms.
- 4) install a patch that allows 't' to exists elsewhere in the PATH.
- 5) Remove 'e^t' notation.
- 6) Recognizes and handles correctly the 'SQ()' function.
- 7) Many changes in how the routines work that speed up or
- otherwise enhance their performance.
-
- The origional routines used Wanye Scotts polinomial routines for most
- of the grunt work. I don't think any of Wayne's routines are still in this
- package, but he deserves credit for the notation and untimately these
- routines since I never would have bother without his work.
- Also, Bill Wickes' port of a polinomial root finder is included in
- these routines. Thank you Bill for the efforts.
- Thank you also to Detlef Mueller for is compiler/decompiler that
- I used to write the majority of code in these routines.
-
- The remainder of this article is an edited version of my origional
- post.
-
- The following programs are released to the public domain
- provided that no money exchange hands (unless of course my hands
- are involved).
-
- A few disclaimer are in order.
-
- 1) The routines in this directory use Wayne Scott's polynomial
- root finder routines extensively. Beware -- if you already have
- these routines and use them, then you need to read all of these
- documents to determine what effects might surface. For the most part,
- these routines are entirely different even though they do accomplish
- some of the same tasks.
-
- 3) If you are unfamiliar with the format of the polynomials
- used by Wayne's routines, here is a brief refresher:
-
- the polynomial : x^4 - 3*x^3 - 2*x -1
- is represented as: { 1 -3 0 -2 -1 }
-
- This is to say the first element of the list is the
- coefficient for the x^4 term and so on through the equation. It is
- customary to use 's' for the Laplace variable, so from here on, I
- will use 's' in my examples.
- Some of the routines require two polynomials on the stack.
- For example, the ratio of the two polynomials representing this
- expression:
- 3*s^5 - 3*s^3 + 5*s^2 - 2
- ---------------------------------------
- s^5 - 7*s^4 + 15*s^3 - 5*s^2 -16*s + 12
-
- would be represented on the stack as:
-
- 2: {3 0 -3 5 0 -2}
- 1: {1 -7 15 -5 -16 12}
-
- Another method of representing the same ratio is:
-
- 2: {3 0 -3 5 0 -2)
- 1: {3 2 2 1 -1}
-
- where level 2 contains the same list as the previous example.
- However, level 1 contains the roots of the denominator.
-
- Hopefully, these examples are clear enough for you to get the
- picture.
-
- The following are descriptions and examples of each of the
- functions in the LAPLACE directory:
-
- t
-
- This variable returns an unevaluated copy of itself. I allows the
- routines to operate when ther is another 't' defined in the current path.
- It is also useful for keying is formulae. If you want the independant
- variable to be something besides 't' then simply store your vaiable in 't.'
-
- ->L
- This program takes an algebraic object and returns its Laplace
- Transform. The input function must be a function of the variable
- stored in 't.' that is to say that the only independent variable
- in the equasion on level one of the stack must be stored in the variable
- lower case t. The functions that it recognizes are constants,
- exponentials, sines, cosines, and polynomials. The program should
- allow any combinations of multiplication, addition, subtraction,
- and integer exponents. Division is not supported, however.
- For example:
-
- 1: 'COS(2*t)^2'
- ->L
-
- after a pause will return :
-
- 2: { 1 0 2 } ; numerator
- 1: { (0,4) (0,0) (0,-4) } ; roots of the denominator
-
-
- This represent the transform. With this as an input, the
- inverse transform function returns :
-
- L->
-
- 1: '1/2 + 1/2*COS(4*t)'
-
- This doesn't look the same as the original function; but, the
- answer is correct. COS(t)^2 = 1/2 + 1/2*COS(2+t) is a
- trigonometric identity. Kinda nifty eh?
-
- Another interesting result of the transformation is
- integration. Integration in the time domain is division by s in the
- s domain.
- So, take the function:
-
- 1: 'EXP(-(2*t))*t*COS(t)^2'
-
- ->L
-
- Returns:
-
- 2: {1 8 26 40 32 }
- 1: { (-2,2) (-2,2) (-2,0) (-2,0) (-2,-2) (-2,-2) }
-
- The list on level one is the roots of the denominator. If you
- add a zero to the list (edit the list or just put a zero on the
- stack and press the + key) you are effectively multiplying the
- denominator by s. This is the same as dividing the fraction by s.
- The result in the time domain, after the inverse transform is done,
- is the integration of the original function between the limits of
- 0 and 't.' For example:
-
- 2: { 1 8 26 40 32 }
- 1: { (-2,2) (-2,2) (-2,0) (-2,0) (-2,2) (-2,-2) 0 }
-
- ->L
-
- Returns:
-
- 1: '1/8-1/8*EXP(-(2*t))*COS(2*t)*t+1/8*EXP(-(2*t))*SIN(2*t)*t+1/16*
- (EXP(-(2*t))*sin(2*t)-1/4*EXP(2*t)*t-1/8*EXP(-(2*t)'
-
- This is the integral of the original function evaluated
- between 0 and t. In many cases the general solution can be
- obtained by replacing the constant (in this case 1/8) with a
- general constant of integration. Needless to say, this method of
- integration was a little easier than looking in the integral
- tables. The description of the inverse Laplace Transformer
- follows.
-
- L->
- This program takes the numerator, level 2, and the
- denominator, level 1 (factored), and returns its inverse Laplace
- Transform. The factors of the denominator need not be grouped
- together as Wayne's routines require since they are sorted before
- anything is done to them. I originally wrote this routine and
- uploaded it to hpcvbbs, but I did not include much for
- documentation. Since then I have seen it posted a few times and
- have heard of some bugs that I am unable to duplicate. This may be
- because the users are using Wayne's routines with this one, or, I
- fixed the bugs and don't remember. Either way here is the latest
- version.
- The routine should correctly transform the ratio of any two
- polynomials with real coefficients. The only limitation i know of
- is that the numerator should be of lower order than the
- denominator. You may still get the correct answer if this
- condition is not met but there are no guarantees.
- I have found absolutely no problems with this routine. In
- fact, I have found 2 errors in the transform tables of the "CRC
- Handbook of Mathematical Formulas.' I am not willing to say that
- there are no bugs because I am sure they exist. Please let me know
- as they become apparent. I have been truly amazed with the results
- this program returns; Wayne did a good job with his routines. He
- did almost all of the work. Here is and example:
-
- 2: { 2 0 4 }
- 1: { 1 1 0 4 }
- L->
-
- Returns:
-
- 1:'-1 - 2*t*EXP(t) + EXP(4*t)'
-
- RT->
- The results of this routine are different depending on the
- number of lists on the stack. If there are 2 lists of numbers on
- the stack, the routine will assume that the represent a fraction and
- the numerator is divided by the coefficient of the highest order term
- in the denominator. This is necessary to keep the ratio correct
- since this term is lost in the expasion. In the event that the stack
- contains only one list this program returns the roots of that list.
-
- 1: { 1 -6 1 24 -20 }
-
- RT->
-
- returns:
-
- 1: { 1 2 -2 5 }
-
- or:
-
- 2: { 1 2 4 }
- 1: { 2 0 -2 }
-
- RT->
-
- returns:
-
- 2: {.5 1 2 }
- 1: { -1 1 }
-
- FADD
- This routine adds two partial freactions. They most be
- in the form:
- 4: list (numerator)
- 3: list (denominator roots)
- 2: list (second nemerator)
- 1: list (second denominator roots)
-
- &
- This routine convolves (sp?) two partial fractions. It is
- used by the routine ->L. It either does a partial fraction
- expansion of one of the two terms and then does an 's' shifted
- summation of the terms, or is does a straight multiplication of the
- terms -- depending on which is appropriate. It is still written
- in user-RPL since there was no real speed increase when I rewrote
- it. I believe that user-RPL should be used whenever possible to
- avoid as many headaches as possible.
-
-
- SORT
-
- Fairly self explanatory. Not the bubble variety. It is much
- smaller than the bubble sorts that I tried and is a little faster
- for lists that are shorter than about 20 elements. The sort order
- is largest to smalles with wieghting on the real value. This means
- that the unstable roots will be at the begining of the list if they
- exist.
-
- RED
- This routine uses PDIV to remove any common roots in the
- numerator and denominator. It is slow but necessary if you are
- working with complex transforms.
-
- Q
- This routine takes an object from the stack and attempts to
- rationalize it to within 4 digits of accuracy. In other words, if
- you have a nomber like 5.200004454 and want to round it to the nearest
- fraction then Q is your program. It is necessary because the roots
- returned by the root finder are not exact. And the calculator
- drops digits here and there when dividing or finding roots. The
- routine will also accept lists, algebraics, complex numbers, and
- combinations of any of the above.
-
- PMUL
- This routine take two polynomials and returns their products.
- I have completely rewritten this program to speed it up and
- slightly change the function. The objects do not have to be lists.
- The routine will now multiply a list by a constant. It should
- function identically to Wayne's routines other than this change.
-
- IRT
- This routine take the roots of the polynomial and multiplies
- them to find the polynomial.
-
- PADD
- This routine takes two polynomials and adds them. In addition,
- if the object on level 1 is a number (real or complex), the routine
- adds the number to each of the elements in the list in the other
- stack level. These changes were made in the interest of speed.
-
- TRIM
- This routine takes a list and performs Q and then strips the
- leading zeros. It works identically to the original I believe.
-
- PDIV
- This routine is NOT the same a Wayne's. This routines accepts
- a list, representing a polinomial, and a number, representing a root
- of the polinomial, and returns the list with that root divided out,
- and the remainder which is also the value of the polinomial evaluated
- at that root. Example
-
- 2: { 1 -2 1 }
- 1: 1
-
- PDIV (returns)
-
- 2: 0
- 1: { 1 -1 }
-
- RDER
- This routine takes two lists (numerator,denominator) and
- returns the numerator of the derivative of the ratio.
-
- PDER
- Accepts a list representing a polinomial and returns a list
- representing the derivative of that polynomial.
-
- PF
- Does partial fraction expansion of the ratio (numerator,
- roots) on the stack.
-
-
-
- The ASC encoded directory follows. Use ASC-> to decode. The
- total size is 6127 bytes.
-
- Please let me know id this program is in any way useful to amy of
- you. Also please let me know of any suggestions or bugs that
- occur.
-
- Good luck,
-
- John Meissner
- END_DOC
-
- BEGIN_ASC laplace.asc
- "69A20FF78BF200000020056420D9D20E163278BF184E203094254592CF18B9C1
- 1C432D6E2010E4D6E201044D6E201046D6E2010E6E16329C2A2D6E2010E60A13
- 2D6E201096D6E201044D6E2010966C7D11C432D6E201027E16324B2A2D6E2010
- 463303278BF1D6E20102784E20400544946592CF14B2A2279E1D5032D9D20803
- A20DCF13FBF19C2A276BA1DBBF1B2130496328DBF1D6E2010E4D6E20102784E2
- 040054494658DBF12ABF1DBBF150FA1D13A20DCF1D6E2010E4D13A2A9CF13CE2
- 29C2A2D5CE1AFE22D9D209C2A2233A2A9CF19C2A290DA10A132D6E2010A6803A
- 2A9CF178BF184E204005D455C4803A25BCF178BF1624B1DBBF1803A25BCF184E
- 20400544542584E204005D455C4803A25BCF1599A1D13A25BCF184E204005445
- 42584E204005D455C484E20400514444478BF1D6E20102784E2040054494658D
- BF1DBBF192CF1803A2A9CF1D6E2010A620BB1EEDA150FA1233A20DCF1C4232B2
- 1305DF223FBF13FBF1EF53208332D6E2010E6387C1EF53293632B21307E20040
- 0544542540D9D202BA81D9F8112040D9D2014C2630040D9E36D9D20E623047A2
- 04B2A2B2130B2130D9D20B9F06E0E30F7436523309427009736FBD81EEDA1942
- 704337095450B2130B2130B2130D9000402544542540D9D20E16321C432D6E20
- 1066D6E201076E1632D6E20106684E204005445425D6E20107684E204005D455
- C4D6E201066683A284E204005D455C4D6E20107684E20400544542584E204005
- D455C484E204005144444EF53293632B21304C000400544946540D9D20D8A81D
- 9F8143C46D9D203223014C268131647A2003D4303D43B21300D4707E316C9A36
- 1BE36D9D20523307E316EC370881306B316EEDA1942703F21676BA1433707E31
- 6E93307E3165A136B2130D9D204423047A20B2130B213079470B2130B21304D0
- 00101510D9D202BA81D9F819FF30D9D20710402C230339200000000000000050
- 925B2E26A55C2268DA1662726D9D20DD036339201000000000000960A88A28DA
- 16E6230D9D201D236B9F06B2130B2130B213030040D9D20C2D503223084E2010
- 153223084E201015AAB368DA164423072C50B213012040D9D2014C265CE36442
- 30D9D203C3705233084E2010159427043370B213095450B213094040D9D2051A
- 022D1268DA16D9D20FA450F74365233084E20101594270433701D236B213084E
- 2010154C9F1B2130FEF30E8E60B2130D91003025544430D9D20D8A81D9F8166C
- 46D9D2014C26A3336D9D208813081316747263C3709427009736EB116FDE2684
- E2040054494653223084E2010154B2A2F2E36D9D2012F060E736942700973681
- 316B2130664363223084E2040452594D42C23056316B213095450B2130B2130B
- D0004035F4254540D9D202BA81D9F8112040D9D2014C2630040D9E3695450D9D
- 208813047A2003D43B21300D470EC370CA130C2D5059230C2D5059230178A2CA
- F06CA1301C8A2CAF06A88A2CAF0664B3057B308DA16D9D203223012270E0E305
- CE36D9D20442306B316E9330B2130D9D20E0E30072706B31652330B2130B2130
- D9D206B316E9330B2130433706B316E93306B43695450B2130B2130B21308310
- 040452594D440D9D202BA81D9F8112040D9D2084E201015FA4502A170881303A
- 1164B2A2E2B302C2300F63664B30EE170D9D20881303F21644230E0E30B21305
- E17095450B2130B21302900020254520D9D20D29512BF8171040D9D2088130F8
- 53059F30E2B30399162BC8188130265308DA364EC307F8162ED73F2926DEE32F
- A42524430CAF0611920A20002CE301192078200CBD30D2473CCD206761082317
- 9E7E78FB97601C914313016913210417914313016E1641421011641321031C41
- 4313016E142CC8A8501641691321021141311111411741411761131411333466
- 200CA131340000912A134152716F058FA4CB28E78D011A24902A090EA05A08BA
- 501028F88AC0111CC10150C20AC28EC4B0AC28E1AB011234084002490C708BE1
- 605E26C002034889991088EA2A01471091318E22D09795105118CA8E68B08EAE
- C08F88AC0119CE10952DAC2B468EECA0AC2B468E02B011C135147CECE4B2CE55
- 58E5B018E4F218E43A08EC4E08E2CB08C62A08EA9901318E6AC08E29C005BCC8
- EDE90AF21081098C7F901438E85418FA4CB28EFCD08EC4018E87118E05C08E85
- 9011C1351478E3FE08E3EF0D28E5EE0058FBCEB28F779B2AC08F896B28F6DEB2
- 8F779B28FAA6B28EC0218ECEB0AF2AF32EB07B578ED2908E8BB08E97C01348E2
- C80147CE131AF0AF18E2AB08EFAB0AC018F1848ED8B010B8EE9B0058E5E808E3
- 3B08E89B08E2B808EA6B08E87B08E51B08EBB808ED6B0AC21238AC50BCE1238E
- D7808EF2B08F88AC011BCE559058E04B08EB880BCC8E13B08FD7EB28E44808E6
- FA018F1848E02808E7990460642F8EFF70AF2CEAF3A5F8E82808EB4C08E73A08
- E7CA0058E5180AF3AF22B335441AFF8E7F708E6B018E69A08EBAB0AF0AF18E07
- A08EA6A0D28E43D0AC08EFBB011C135179AE214D8EB7C08E60E08EDC908EA5A0
- 8FB8EB28EFD804606645794774A78E8DD070578E0C804A411C13517914F96E91
- 8E68C072E673178E898052276078E24B0057F0777478E93908E109011C135179
- AC2B46155420324A08E75C01348E129017F1743068ED9908EA890A0E50F8E66B
- 077668E18907B868E88800576A68EE280719678968E02808EED808E24808ED5B
- 005AF2CEAF32EB07B0774868ECB808E7390AC28E0C7046064418ED7808ED0908
- E5BC0AF0AF18E1E808E199013477E5147CE10AE61318EBD8013710B1378E9B80
- 8EEAB06D508E3C800571068E06808EFB807BD578174F28EC8808E34808E49807
- 4D51CF1C48EB8807EA57BE65606E2B8E55808EC5800577A51231338EE5801331
- 237B7578B64FC8EF1808F88AC011ACE10A460646FAF210810974258E71807CB7
- 8EB18018F18473B68ECD6079A67A0571A6AC08ED2908408C7FB07E3771E67AD4
- 8E79F08EE6B078D475258EF68013470A670A4147131DACE10ACE06D670971331
- 031338E96A07127AF2154716F154716F15471697457154716F14416477171128
- AC021371088E469011813572E67127602007068B2017DC61CF1C46FA018F1847
- E177D9672067AE6057AB5724472B572B67D34BCC7114BCC79867AE6760471767
- F35560628971B616F16475B57D967F6516F16478F371657A467CE3BCC70C3BCC
- 72F5729675B376267EE45606139706616F16473660573B312313371661331237
- E737A568FD7EB20706D711A8B7F17FE47295723617F1747963BCC74437584580
- 8C7C8F78E58F88AC011ACE10A4606F9E07769575D578457AD58E28908E108078
- D2794777B40577037BA570D27E037AB275137113BCC75351361341357CB47C85
- 7D9579B27D657C75AF2AF32E303A8F79B27B75779279C579A21371361377DF47
- 63571627EA2BCC16F1647A827E35716278D479357D057684781573627D727FF4
- 79048EBAC07A468508C419011C135179157494E606BA005AF0CCAF12E305A852
- 032EC07AE317F17478B47FF170947AB117F17473B38E54C08E44807CB173C17D
- A17623919606FEA760475748ED18078F3776471C17D6179E5057F7170A170717
- 43175E246062C08D04F01170157494E55B461554759605787176F072147C1170
- 71701579837F03785377E279737CF30574017A41723378036A8A7CF575E27692
- 734374C3AF22C32521AF7AD2BCE78907F017357AF0AF12EB0579527AC67EA47F
- 728F88AC0613A73A57C8211997A9111805BCE1087BD074857D627FC0CE1087B0
- 613411879361187A337923068F88AC007CE5AE8C836FAF9AF7AF601AFDAFFAFD
- AFE0104114131203427200CA018DF6EB28D5BEB28D0CEB28DBCEB28D6DEB27EE
- F136061368FAC7B2071340174DF8DE19B27BB264FF7E7F6CEF8D779B28D9DBB2
- 8DCBBB2058F64E927B318F64E9212011C13517B147134150716F110150716F8F
- 88AC01361451CB147CE1458AE00208F2D760142164808C114ACA104131147108
- 70C497D0013713411878C1DB8FC0760AF011C94AD0B542EB055D0058F141A204
- 76757F3F64BF114ACA104D2796497D00AF011C94AE02EB0505CCAB07F35780F4
- 5D05D6C62034000504908BE0001FA8B24001AF0AF10305BCE7C8E2E919009480
- 0017831740070318D99EB275716CEF75917311792171EF7701AFAAFBAF50171F
- 07ACF79E065CF720175A47AF065BF7BE0759473E065AF7D105607673057C7470
- 0076C07D0E61A0AF0AF12EB05B05011CF1C41CF1C41CF1C41CF1C41CF1CF1C90
- 117F17417F17417F17417F17417F17F1790118F18418F18418F18418F18418F1
- 8F1890116F16416F16416F16F16901D7F3C3C6C3C3011CF1C48D660C218F1848
- DB40C21CF1C48D3EFB28DDFFB28D710C28D130C220349020066202034E120069
- 102034D52006C0020344F100D711C04CB05134689F2034902006C0020344F100
- D711C04CB05134629F20321106DF1203262062F12032B3067E120320506CD120
- 3256061D12032A7066C12032F806BB120324A060B120329B065A12032EC06A91
- 20323E06F8120328F064812032D01697120322216E61203273163612032C4168
- 5120321616D41203267162412032B81673120320A16C2120325B161212032AC1
- 66112032FD16B0120324F1600120321106DF0203262062F02032B3067E020320
- 506CD0203256061D02032A7066C02032F806BB020324A060B020329B065A0203
- 2EC06A9020323E06F8020328F064802032D01697020322216E60203273163602
- 032C41685020321616D40203267162402032B81673020320A16C2020325B1612
- 02032AC166102032FD16B007310665D7B00686D20326200423310020D711CCB1
- 35017400634D04D711C135147EB7FFC203427200C3137CB135017C0069FC7400
- 6B0D04D711C135147EF174147CB7FBC2034282006FBF774D7D0A779B75EC710A
- 6E8B7AFC7E1D7B0A76C979C9706C720A72D979D9736BBCC7FE973A9714C749C7
- 44C7BD97BA965B97FAC783BBCC7C797B342E91DA1AC1B05AF223305AFA8D16EB
- 277FB763C7B5979EF7E3C7F6F7FDB704C8FB8EB276897FDA72497A7966DA77AE
- 134D230270CEAF210810930270FB73AACE55F01793B7EEA057083718F11C1351
- 4704CE10AE67DAEAC0057FF87EBBAC27ED88F88AC011ACE10A5FD058606079F8
- 203431000EA730C8E588F77CD8ED48F8F7AEB2720A5808CED7F11C1351791574
- 94AF17A4D8E768F8E228F73D95808C936F78407C8A7E1B8E628F766A712A75B2
- 8E6E7F8F7AEB28EE28F8ED18F7F8991D808C967F8CE70F798C7BE97C997FD97D
- 4E7CFB77B9754A78CA8FB8EB2057FE98ED08FBCC8F0B7B27BE971C98EBA7F8F7
- A7B2203205075A98E397F8ECB7F8EFD7F739978907929799C7C697B8D8EB57F7
- EBC058F7A7B28E467F8E967F73BD7E7979197DC117F174700A8E227F7FBB7129
- 057FA1746B7EF90572C18EC17F8EB37F8E49DF7C4C8EFF6F78785008E4E6F6EA
- 9726C74E87C497CD879098E2C8F8E578F743974B877DC74C07B398E848F7BE87
- A988ED48F77BC8E348F8E478F7F8C72A016F1648E618F75C88E668F7A708E518
- F8EB96F8E208F8EF86F8E466FAC67CD88E728F94A607640793C8EDD7F8EB68F8
- E818F768C8E768F8E8E7F70888EEF7F8E9B7F766C8EB38F8CCC7FBCC118BCE10
- 8018E1D5F8E087F7CF87E5097D606D5C8E0D5FAC28E2D5F8EB06F7D507D3C8E6
- F5F18F18474988E465F8E9D5F11A94A01118AC6108AC0018CE17F2E11991E70A
- C00191DB08E255F5FE77008DF0AB28E785F8E6E6F8EB75F8CC45F3191AF1A750
- 4C405550B75A6E5DE25A3CB3481591D7FBF5AD4AC001B2130B2130E171010621
- 0D9D20E1632DBBF192CF184E20200564803A25BCF178BF19C2A26C7D1DBBF184
- E20302545D83F2A20DCF184E204005D455C478BF18B9C11C432D6E20204623D6
- E20204613D6E2020E623D6E201027D6E2010E6E163247A204B2A2B213047A20B
- 2130D6E2010E69C2A20A132D6E201096D6E201027D6E2010966C7D13CE2278BF
- 14B2A2279E1AFE228DBF15BF22D9D20D6E20204613D6E2010966C7D1D6E20109
- 61C432D6E201046D6E2010A6E1632D6E20204623D6E20104684E204005144444
- D6E2020E623D6E20104684E20400514444484E2030942545E0CF184E204005D4
- 55C4D6E201096330323CE22D6E2010E6EBBE178BF1AFE22D9D20D6E202046134
- 5632D6E2010A6976324F8026C7D1D6E201046279E1387E1B21305DF22D5032D9
- D20D6E201096D6E2010A690DA1872B184E204005D455C492CF184E2030942545
- 84E204025445425DBBF178BF176BA1DBBF1D6E2010A6B213049632DBBF1EF532
- 84E204064144444B21305DF22683A208332EF53293632B21307F200400514444
- 440D9D20D8A81D9F8166C46D9D2013236EF116B765038D30F9D2614C2647A200
- 3D43B21300D4703F21614C2698E3644230D9D203C370942705233094270F6E30
- 097365233076BA143370B21306B43695450B213043C46D9D2047A2003D43B213
- 00D470FA45066226A2170D9D20F7436523306B31676BA19427043370B2130954
- 5079470B213012040D9D203223084E204005144444B2130B2130D31004005D45
- 5C440D9D20D8A81D9F8166C46D9D2014C2698E3644230D9D205A1361323647A2
- 003D43B21300D470EF1165923084E204005D455C46B31698E36A2116D9D204B2
- A26B316073E595450F1250CAF0684E204005D455C484E204005144444B213079
- 470B2130B213043C46D9D2047A2003D43B21300D47014C26A3336D9D20F74365
- 23306B316EEDA19427043370B21309545079470B213012040D9D203223084E20
- 4005D455C4B2130B2130B5100406414444440D9D20E16321C432D6E20204613D
- 6E2020E623D6E20204623E1632D6E2020462384E203094254584E204005D455C
- 4D6E2020E623D6E2020461384E203094254584E204005D455C484E2040051444
- 44D6E20204613D6E2020462376BA184E2030255444EF53293632B21300E00030
- 94254530D9D202BA81D9F8112040D9D20FA45047A209C2A2B2130322302A1704
- D226EE170D9D20855821BF26599A184E204005D455C4322304B2A2AF25084E20
- 400514444432230B21305E17044230B2130B2130AA000302545D830D9D2084E2
- 040452594D42BA81D9F8166C46D9D208813098050872B13223084E20302545D8
- CAF0684E204005D455C432230B213012040D9D2014C269FF30D2C26D9D208523
- 0FEF30B2130D9D20FBD81900D184E20202545B7FC188B26AEC81B21309545084
- E201015B2130B21304E00020C4D820D9D20E163284E204035F42545DBBF192CF
- 184E2020056484E20101578BF18B9C11C432D6E201046D6E201036D6E2010E6E
- 16324B2A2D6E2010E69C2A20A132D6E2010A4D6E201046D6E2010A46C7D1D6E2
- 01036D6E2010A46C7D1D6E2010A41C432D6E201076D6E201066D6E2010B6E163
- 29C2A23303245632D6E2010B6976324F802D6E2010E6CFCE1D5032D9D20D6E20
- 1046D6E2010B66C7D1D6E201076279E13CE22AFE22D9D2084E201047D6E2010B
- 6D6E2010A490DA150FA1EEDA1B21305BF22D9D20339202000000000000020456
- 32D6E2010B697632B4402B21305DF22B213049632D6E201076AC7C184E201047
- EEDA1509B1EEDA178BF1D6E201076918C184E201047EEDA178BF1CA4B1D6E201
- 066918C1EEDA1599A1DBBF1505B1D6E201066AC7C1EEDA1E0CF1EEDA1DBBF1E0
- CF1EEDA176BA1EF53276BA1683A208332EB3A184E201015EF53293632B21308A
- 20020D8C420D9D20D9F81B2040D9D204423047A209C2A2B213047A204B2A24B2
- A2B2130B21309FF30D9D20DEE3247A204B2A2B2130B213094040D9D20ABE812D
- 1268DA16D9D20B7FC1B9F06D9D2079E6076BA133916D9D204423084E2020D8C4
- 5923084E2020D8C484E204064144444B213079E6090DA133916D9D204423084E
- 2020D8C432230683A284E204005D455C4322305923084E2020D8C484E2040641
- 44444B213079E60599A133916D9D204423084E2020D8C432230683A284E20400
- 5D455C432230B213079E60EEDA133916D9D204423084E2020D8C45923084E202
- 0D8C484E201062B213079E60624B133916D9D204423084E2020D8C4CA13084E2
- 01062B213079E60505B133916D9D204423084E20104777920000000000000000
- 000000000000000109B136453F188130599A19B13647A209C2A24B2A2B213032
- 230B213079E60CA4B133916D9D204423084E2010479C2A29B136453F188130DE
- E32322307792000000000000000000000000000000010EEDA188130599A19B13
- 6B213079E60509B133916D9D204423084E2010479C2A29B136453F1DEE3247A2
- 09C2A2B213032230B213079E60D20B1E2B3039916D9D207472684E20104779B3
- 08DA16D9D207A72620BB1DEE324B2A259230AEC81FED30073E595450B2130D9D
- 2084E2020D8C4CA1308DF06AEC81EC370C1216C121684E201062433701002685
- 230B2130B2130B2130B213084E2020D8C484E204035F42545B2130B213083400
- 104710D9D2079E6084E201047B2130C9B1"
- END_ASC
-
- BYTES: #1B9Ch 6127
-
- BEGIN_UU laplace.uue
- begin 644 laplace
- M2%!(4#0X+466*O!_N"\````"4$8"G2W@82.'^X'D`@-)4E0I_(&;',$TTN8"
- M`4YM+A!`U.8"`61M+A#@YF$CR:+2Y@(!;J`QTN8"`6EM+A!`U.8"`6G&UQ%,
- M(VTN$"#G82.THM+F`@%D,S!RN!]M+A`@A^0"!%!$258I_$$K*G+IT04CG2V`
- M,"K0_#&_'\FB<K8:O?NQ$@.4-H*]'VTN$.#4Y@(!<D@N0`!%E&2%O1^B^]&[
- M'P6OT3$JT/S1Y@(!3AVCHLD?PRZ2+"I=[*'O(ITMD"PJ,J.BR1_)HI+0&J`Q
- MTN8"`6H(HZ+)'X?[@>0"!%!-54P(HU++'X?[84(;O?N!,"JU_('D`@101$52
- M2"Y``-54Q80P*K7\49D:':-2RQ](+D``150DA>0"!%!-54Q(+D``%41$=+@?
- M;2X0((?D`@101$E6V/O1NQ\I_($P*IK\T>8"`6H"N^'>&@6O(3,JT/S!)",K
- M,5#](O/[,;\?_C4"."-M+A#@-G@<_C628R,K,7`N``101$52!)TM(*L8G8\1
- M`@2=+1#$8@-`T.ECG2W@)@-T*D`K*BLQL!(#G2VP^6`./O!'8R4SD"0'D#?V
- MVQCNK9$D!S1SD$4%*S&P$@,K,=`)``121$52!)TMX&$CP332Y@(!9FTN$'#F
- M82-M+A!@AN0"!%!$15)M+A!PAN0"!%!-54QM+A!@9C@J2"Y``-54Q=3F`@%G
- M2"Y``$54)(7D`@10355,2"Y``!5$1.1?(SDVLA(#Q`!``$649$70V0*-BM'Y
- M,UMD"(S(0Q&(8$T:G`C!-`],T*S$`30?G$\:I8[$^UMD")3-P/F'.<X`8
- M`[83YMX:27(P+V%GJT$S!^<3YCD#YQ-6&F,K,=#9`D0R0*<"*S&P$@.7=+`2
- M`RLQ0`T``5$!G2T@JQB=CY'_`YTM<`$$PC(PDP(`````````!2FUXF):Q2*&
- MK6$F)];9`MTP-I,"`0``````D`:*J(*M86XRT-D"T3*V^6`K,;`2`RLQ,``$
- MG2W`T@4C,H#D`@%1(S*`Y`(!4:H[AJUA1#)PP@4K,1`"!)TM$,1BQ3Y&)`.=
- M+3`\!R4S@.0"`5%)<D`S!RLQD$4%*S&0!`2=+5"A(-(AAJUAG2WP2@5_-%8R
- M`T@N$!"5)`<T<Q`M8RLQ@.0"`5'$^;$2`^\_X.@&*S'0&0`#4D5$`YTMT*@8
- MG8]AQF2=+1#$8CHSUMD"B#&`,6%')S8\!TER`'ECOA'V[6)(+D``191D-2(#
- M2"X0$$4K*B\^UMD"(0\&?F-)<@!Y8Q@3MA(#9C0V(@-(+D!`)974)"P#91.V
- M$@-95+`2`RLQL`T`!%-/4E0$G2T@JQB=CQ$"!)TM$,1B`T#0Z6-95-#9`H@Q
- M0*<",$VS$@/0=.`\!ZPQP-(%E3+`T@65,A"'*JP/QAH#P:C"^F"*J,+Z8$8[
- M4+<#V!K6V0(C,A`B!PX^4.QCG2U`)`.V$^8Y`RLQT-D"#CX`)P>V$U8R`RLQ
- ML!(#G2U@.V&>,[`2`S1S8#MAGC-@2V-95+`2`RLQL!(#.`%`0"65U$30V0*R
- MBM'Y&"%`T-D"2"X0$/5*!:)Q@!@#HQ%&*RHN.R`L`_`V9K0#[G'0V0*(,3`O
- M840RX.`#*S%0'@=95+`2`RLQ(`D``E)4`ITMT)(5LH]Q`02=+8`8`X\U4/D#
- M+CLPF6&RC($8`V(U@*UCY#QPCV'B??.28NT^\DI20C3`^F`1*:`"`,(^$)$"
- MAP+`VP,M=,/<`G86@#)QZ>>'OWD&P1DT,1"6,1)`<1DT,1#F810D`1%&,1(P
- MP10T,1#F0<*,B@5A%)8Q$B`1%!,1$11Q%!1Q%C%!$3-#9@+`&A-#```9HC$4
- M)1?V4/A*O()^V!"A0@FBD.`*I8"K!0&"CZ@,$<$<$`4LH"SH3`O*@AZZ$"%#
- M@`0@E,`'N!X&Y6(,(#"$F)D!B*ZB$'0!&1/H(@UY60$5@:SHA@OHZ@SXB,H0
- MD>P!6=+*LF3HS@K*LF3H(`L1'%-!Q\Y.*^Q5A5X+@4XO@4ZC@,[D@"Z\@&RB
- M@*Z9$!/HI@SHD@Q0RXS>GJ`O`1B0R/<)08..18&OQ"OHSPWH3!#H>!'H4`SH
- M6`D1'%-!AS[O@#[^T()>[@"%O^PK^'>YH@SXF+:";^TK^'>Y@J]J*^@,$NCL
- M"_JB/^(+MW7H+0GHN`OH>0PQA"Z,$'3L,:$/^H$NNH#^NJ`,@1](Z(T+`8ON
- MN0"%7HZ`/K.`CKF`+HN`KK:`CK>`7K&`OHN`WK:@+"R@7+'C+H?0CH+POX
- MB,H0L>Q5"84.M("^B+#,Z#$+^'V^@DZ$@&ZO$/B!A`Z"@'Z90`9&\NC_!_K"
- MKC]:CXZ"@+[$@'ZC@'ZL`(5>@:`_^B([4T2A_^CW!^BV$.B6"NBK"_J@'^AP
- M"NAJ"BWH-`W*@/Z[$,$Q%9?J$M3H>PSH!@[HS0GH6@KXB[Z"_HU`!F94EW1'
- M>NC8#0=UZ,`(I!3!,16709_F&>B"=N-W'HF`@E<@:'+K0`=0]W1X>>DX`>
- MD!#!,167RK)D444"(Z2`?L400^@A"7$?1P.&WIF`KIB@X`6/;K9P9X8>F'"+
- MAHZ(`'6FANZ"<)%VF(8.@H#NC8`NA(#>M0"E+^SZ([YP"W>$ALZ+@'Z3H"SH
- MP`=D8$2!WH>`WI"`7LN@#_J!'HZ`'ID00W=>0<<>H&XQ@;Z-$',!&W/HN0CH
- MK@O6!>C#"%`78.A@".B_"+==AW'T@LZ(@#Z$@$Z)<-05_,&$OHAPKG7K5@;F
- MLNA5".A<"%!W6B$3,^A>"#$3,K=7AVOTC/Z!@(^H#!'*'J!D8&2O+P$8D$=2
- MZ!<(QWOH&PB!'T@W:^C<!I=JIU`7:LJ`WI*`!,CW"^=S%VZG3>B7#^AN"X=-
- M5U+H;P@Q=*!VH!1T,='*'J#L8&T'>3$3,#GJ9P(:<O471A'T47]E%T87E4
- M%T47]D$41G=Q$8+*(#$7@.AD"1$84R=N%W(&`G!@N`)QS1;\P62O$/B!=!YW
- MG78"=NH&=;IU0G2R=;)V/;3,%T'+?(EVZG8&='%V/U4&)I@7:V$?1E=;UVGW
- M5F$?1H<_%U:G9,<^RWS`L\PG7R=I5SMG8N=.96`Q>6`6]F%T8P9ULQ,R,7-A
- M%C,A<WYS6H;?YRMP8'T1BGL?]TXG62=C<1]'ES;+?$1SA50(R,?XAU[XB,H0
- MH>P!2@;VZ7!G65==AU2G7>B"">@!"(<MEW1W2U!W,+=:!RWG,*<K5S$7,<M\
- M-15C,113QTO'6-=9ERO75L=7^J(_X@.C^)<KMU=W*9=<ERHQ%V,Q=_UT-G5A
- M<JZRS&$?1J<HYU,7)H=-EU/74&=(AU$W)M<G]T^70.BK#*=D6(!,D1#!,167
- M44=);F"K`*4/S/HA/E"*)3#B#*<^<1]'ATOW'P=)IQMQ'T<W.^A%#.A$",<;
- M-QS7&F<R&6E@[WH&='6$WH%P^'-G=,%Q;7'I!75_<:!Q<'$T<>5"!B8,V$`/
- M$0=11TE>M61115=I4(<79P\G0<<1!Q<'49<X]S"'-7<NES?'/U!'$*<4)S.'
- M,*:HQU]7+F<I-S1'//HB/%(2^J<MRWZ8<`]Q4Z</^B&^4)<EIVSG2O<G^(C*
- M8#%ZHW6,$I%YFA&!4,L>@+<-1UC7)O<,[`%X"Q9#$7@Y%H&G,Y<R8/B(R@#'
- M7NK(./;ZJ7_Z!J'?^J_?^@X!%$$Q(3`D)P"L$-AOOH)=ZRO8P+Z"O>PKV-:^
- M<NX?8V`QAJ]\*W`Q!''4C^V1*[<K1O_G]\;^V'>Y@IV]*]B\NP*%;^0IMQ/X
- M1IX2`A$<4W$;=#$4!1?V$1`%%_;XB,H08T$5O$'''E2H#B"`+WT&01)&",@1
- MI*P!%!-!%X`'3'D-$',Q%(&''+WX#&>@#Q&<I`U;)+Y0U0"%'Q0J0&=7]_-&
- M^Q&DK`'4<FF4UP#Z$,%)ZB"^4%#,NG`_=0A/U5!M;`)#`%!`";@.`/&**P00
- M^J`?,%#+?HPNGI$`20@`<3AQ!'`P@9WI*U<7QOY7&3<1EQ(7_G<0^JJ_^@5Q
- M\7#*?^E@Q7\"<:5T^F"U?^MPE73C8*5_'5`&9S=0QT<'`&<,U^`6"OJ@'^(+
- MM5`0P1],P1],P1],P1],P1_\P0D1]W$4]W$4]W$4]W$4]W$?EQ"!'TB!'TB!
- M'TB!'TB!'_B!"1'V813V813V81^6$'T_/&P\/!#!'TS89L`2^(&$O00LP1],
- MV.._@MW_*]@7P((=`RP"0PD"8"8@,.0A`)8!`D-=`F`,(#!$'P!]$0S$"Q5#
- MAOD"0PD"8`P@,$0?`'T1#,0+%4,F^0(C$6#](3!B`B8?`B,[8.<A,`(%QAT"
- M(V5@T2$PH@=F'`(CCV"[(3!""@8;`B.Y8*4A,.(,IAD"(^-@CR$P@@]&&`(C
- M#6%Y(3`B$N86`B,W86,A,,(4AA4"(V%A32$P8A<F%`(CBV$W(3`"&L82`B.U
- M82$A,*(<9A$"(]]A"R$P0A\&$`(C$6#](#!B`B8/`B,[8.<@,`(%Q@T"(V5@
- MT2`PH@=F#`(CCV"[(#!""@8+`B.Y8*4@,.(,I@D"(^-@CR`P@@]&"`(C#6%Y
- M(#`B$N8&`B,W86,@,,(4A@4"(V%A32`P8A<F!`(CBV$W(#`"&L8"`B.U82$@
- M,*(<9@$"(]]A"W`38%9]"V!H+3!B`D`R$P`"?1',&U,01P`VU$!]$1Q30>=[
- M_RPP)"<`/#''&U,0QP"6ST<`MM!`?1$<4T'G'T=!QWN_+#`D*`#V^W?4UZ!W
- MN5?.%Z#FN*?/Y]&WH&><EYP'QB>@)YV7G3>VRWSO>:-Y07R4?$1\VWFK:;5Y
- MKWPXN\S'E[=#XAFMH1P+I2\R`Z6OV&&^<O=[-GQ;>>E_/GQO?]][0(R_Z"MG
- MF/>M)Y2GEV:M=^HQU#(@!^SZ$H`!.2`'OS>J[%4/<3E[[@IU@'.!'\$Q%71`
- M[`'J=JVN#%#WC^>[RG+>B(^H#!'*'J#U#84&!I>/`D,3`.!Z`XQ>B'_'C=Z$
- MCW_J*R>@A8#L?1_!,16744=)^G%*C7Z&CRZ"?]-9",@Y]H<$QZCGL>@F^&>F
- M%Z)7*^CF]_BGOH+N@H_>@7^/F=$(R&GWR'[PE\BWGL>9]YW7Y,>_=YM7I(>L
- M^(N^`G7OB=Z`O\SXL+=RZWG!B;YZCW]Z*P(C4'"EB3YYC\Y[C_Y]?Y-YF'`I
- M>9E\;'F+C;YU?[X,A7]Z*^AD]^AI]S?;YY>7D=<<<1]'!Z#H(O?WNQ>24/<:
- M1[;GGU`G'.@<]^@[]^B4_<?$Z/_VAX<%@$YN;ZYY8GSD>$QYW'@)B2Z,CUZ'
- M?S1YM'C7?,1P.XF.A'_K>)J(WH1_MXP^A(].AW^/?*(0]F&$;H%_Q8ANAG]Z
- M@%Z!C[YICRZ`C_YHCTYFKVS'C>@G^$EJ<$9P.8S>?8^^AH^.@7^&C'Z&CXY^
- M?X"([G^/GGM_9HR^@X_,?+_,$;CL`0B!'EV/#GA__'A>D-<&UL7HT/7*@BY=
- MC[Y@?UUP/8QN7Q_X@724B$Y6CYY='Z%)"A&!RA:`R@"!['$O'I$9?J`,$!F]
- M@"Y57^]W`-@/NH)^6(]N;H^^5X_,5#^1H1]Z!<0$505[I>;5+J7#.X11&7V_
- M7]JD#!`K,;`2`QX7$&`2T-D"'C;2NQ\I_('D`@)01@BC4LL?A_N1+"K&U]&[
- M'T@N,"!%U3@O*M#\@>0"!%!-54R'^X&;',$TTN8"`F0R;2X@0!;3Y@(";C)M
- M+A`@U^8"`6X>-D*G`K2BLA(#="JP$@-M+A#@EBPJH#'2Y@(!:6TN$"#7Y@(!
- M:<;7,>PBA_M!*RIRZ:'O(MC[4?LBG2W0Y@("9#%M+A"09GP=;2X0D!9,(VTN
- M$$#6Y@(!:AXVTN8"`F0R;2X00(;D`@10041$;2X@X";3Y@(!9$@N0``51$2$
- MY`(#25)4#OR!Y`($4$U53&TN$)`V`R/#+M+F`@%NONMQN!_Z+M+9`FTN($`6
- M0V4C;2X0H)9G(_0(8GP=;2X00":7'H/GL1(#U2_2!2.=+=#F`@%I;2X0H);0
- M&GBR@>0"!%!-54PI_('D`@-)4E1(+D`@150DU;L?A_MQMAJ]^]'F`@%J*S%`
- M:2.]^^%?(T@N0&`41$2T$@/5+V(X*H`SXE\C.3:R$@/W`D``%41$1-#9`HV*
- MT?D89DS6V0(Q,N8?87M6,-@#GRT6Q&)T*@#3-"LQ`$T'\Q(6Q&*)/D8D`YTM
- M,#P'27)0,@-)<O#F`Y`W5C(#9ZM!,P<K,6!+8UE4L!(#-$S6V0)T*@#3-"LQ
- M`$T'KU1@)F(J<=#9`G\T5C(#MA-VMAI)<D`S!RLQD$4%EW2P$@,A0-#9`B,R
- M@.0"!%!!1$0K,;`2`ST!0`#55,5$T-D"C8K1^1AF3-;9`D$LENAC1#+0V0*E
- M,18C8W0J`-,T*S$`30?^$58I`T@N0`#55,5D.V&)/J8289TM0"LJMA,&-UY9
- M5/`A!:P/AN0"!%!-54Q(+D``%41$M!(#EW2P$@,K,4##9)TM0*<",$VS$@/0
- M=!#$8CHSUMD"?S16,@.V$^;>&DER0#,'*S&01067=+`2`R%`T-D"(S*`Y`($
- M4$U53"LQL!(#6P%`8!1$1$30V0(>-A),(VTN($`6T^8"`FXR;2X@0";C82-M
- M+B!`)H/D`@-)4E1(+D``U53%U.8"`FXR;2X@0!:#Y`(#25)42"Y``-54Q83D
- M`@10041$;2X@0!;3Y@("9#)GJX'D`@-2143^-9)C(RLQ``X``TE25`.=+2"K
- M&)V/$0($G2WP2@5T*I`L*BLQ,"(#HG%`+6+N<=#9`EB%$OMBE:F!Y`($4$U5
- M3",R0"LJ^E*`Y`($4$%$1",RL!(#Y7%`)`,K,;`2`ZH`,"!%U3C0V0)(+D!`
- M)974)*L8G8]AQF2=+8`8`XE0@"<;(S*`Y`(#4E2-K`^&Y`($4$U53",RL!(#
- M(4#0V0)!+);_`RTLUMD"6#+P_@,K,=#9`K^-D0`=2"X@($6U]QR(*Z;.&"LQ
- MD$4%2"X0$+42`RLQ0`X``DR-`ITMX&$C2"Y`,/4D1=6['RG\@>0"`E!&2"X0
- M$'6X'[C)$4PC;2X00-;F`@%C;2X0X.9A([2BTN8"`6[)H@(:(VTN$*#4Y@(!
- M9&TN$*!D?!UM+A`PUN8"`4K&U]'F`@%*P332Y@(!9VTN$Y@(!:QXVDBPJ
- M,S!"92-M+A"PEF<C]`C2Y@(!;OSLT04CG2W0Y@(!9&TN$+!F?!UM+A!P)I<>
- MPRZB[R*=+8#D`@%T;2X0L-;F`@%*":U1\!KNK;$2`[4OTMD",RD@````````
- M($!E(VTN$+"69R-+!+(2`]4OLA(#E#;2Y@(!9\K'@>0"`73NK5&0&^ZM<;@?
- M;2X0<):!'$@N$$#GWAJ'^\%*&VTN$&"6@1SNK5&9&KW[45`;;2X08*9\'.ZM
- MX<`?[JW1NQ\._.'>&F>KX5\C9ZMA."J`,^([&D@N$!#E7R,Y-K(2`Z@"(-#(
- M)-#9`IV/L0($G2U`)`-T*I`L*BLQ0*<"M*)"*RHK,;`2`_D_T-D"[3Y"IP*T
- MHK(2`RLQD`0$G2V@ZQC2(8:M89TML/<<FP_6V0*7;G"V&C,9UMD"1#*`Y`("
- MC4R5,H#D`@*-3$@N0&`41$2T$@.7;I#0&C,9UMD"1#*`Y`("C4PC,F`X*D@N
- M0`#55,4T(@.5,H#D`@*-3$@N0&`41$2T$@.7;E"9&C,9UMD"1#*`Y`("C4PC
- M,F`X*D@N0`#55,4T(@,K,7#I!NZM,9-AG2U`)`-(+B#0R%0I`T@N(-#(A.0"
- M`28K,7#I!B:T,9-AG2U`)`-(+B#0R,0:`T@N$&"R$@.7;E!0&S,9UMD"1#*`
- MY`(!='<I````````````````````$)`;8U3S@1@#E:F1&V-T*I`L*K2BLA(#
- M(S*P$@.7;L!*&S,9UMD"1#*`Y`(!=,FBDAMC5/.!&`/M/C(B`W<I````````
- M````````````$.#>&H@Q4)D:N3&V$@.7;E"0&S,9UMD"1#*`Y`(!=,FBDAMC
- M5//1[B-T*I`L*BLQ,"(#*S%PZ08ML.&R`Y,9UMD"1R>&Y`(!=)<[@*UAG2UP
- M>F("N]'N([2B4BD#ZHSQW@-PXY5%!2LQT-D"2"X@T,C$&@/8#Z;.&,YSP"%A
- M'!*&Y`(!)C1S$`!B6#*P$@,K,;`2`RLQ@.0"`HU,2"Y`,/4D1;42`RLQ@$,`
- /`70!G2UPZ09(+A!`MQ(#
- `
- end
- sum -r/size 14415/8478 section (from "begin" to "end")
- sum -r/size 41242/6135 entire input file
- END_UU
-