home *** CD-ROM | disk | FTP | other *** search
- /* linalg/exponential.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002 Gerard Jungman, Brian Gough
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
- /* Author: G. Jungman */
-
- /* Calculate the matrix exponential, following
- * Moler + Van Loan, SIAM Rev. 20, 801 (1978).
- */
-
- #include <config.h>
- #include <stdlib.h>
- #include <gsl/gsl_math.h>
- #include <gsl/gsl_mode.h>
- #include <gsl/gsl_errno.h>
- #include <gsl/gsl_blas.h>
-
- #include "gsl_linalg.h"
-
-
- /* store one of the suggested choices for the
- * Taylor series / square method from Moler + VanLoan
- */
- struct moler_vanloan_optimal_suggestion
- {
- int k;
- int j;
- };
- typedef struct moler_vanloan_optimal_suggestion mvl_suggestion_t;
-
-
- /* table from Moler and Van Loan
- * mvl_tab[gsl_mode_t][matrix_norm_group]
- */
- static mvl_suggestion_t mvl_tab[3][6] =
- {
- /* double precision */
- {
- { 5, 1 }, { 5, 4 }, { 7, 5 }, { 9, 7 }, { 10, 10 }, { 8, 14 }
- },
-
- /* single precision */
- {
- { 2, 1 }, { 4, 0 }, { 7, 1 }, { 6, 5 }, { 5, 9 }, { 7, 11 }
- },
-
- /* approx precision */
- {
- { 1, 0 }, { 3, 0 }, { 5, 1 }, { 4, 5 }, { 4, 8 }, { 2, 11 }
- }
- };
-
-
- inline
- static double
- sup_norm(const gsl_matrix * A)
- {
- double min, max;
- gsl_matrix_minmax(A, &min, &max);
- return GSL_MAX_DBL(fabs(min), fabs(max));
- }
-
-
- static
- mvl_suggestion_t
- obtain_suggestion(const gsl_matrix * A, gsl_mode_t mode)
- {
- const unsigned int mode_prec = GSL_MODE_PREC(mode);
- const double norm_A = sup_norm(A);
- if(norm_A < 0.01) return mvl_tab[mode_prec][0];
- else if(norm_A < 0.1) return mvl_tab[mode_prec][1];
- else if(norm_A < 1.0) return mvl_tab[mode_prec][2];
- else if(norm_A < 10.0) return mvl_tab[mode_prec][3];
- else if(norm_A < 100.0) return mvl_tab[mode_prec][4];
- else if(norm_A < 1000.0) return mvl_tab[mode_prec][5];
- else
- {
- /* outside the table we simply increase the number
- * of squarings, bringing the reduced matrix into
- * the range of the table; this is obviously suboptimal,
- * but that is the price paid for not having those extra
- * table entries
- */
- const double extra = log(1.01*norm_A/1000.0) / M_LN2;
- const int extra_i = (unsigned int) ceil(extra);
- mvl_suggestion_t s = mvl_tab[mode][5];
- s.j += extra_i;
- return s;
- }
- }
-
-
- /* use series representation to calculate matrix exponential;
- * this is used for small matrices; we use the sup_norm
- * to measure the size of the terms in the expansion
- */
- static void
- matrix_exp_series(
- const gsl_matrix * B,
- gsl_matrix * eB,
- int number_of_terms
- )
- {
- int count;
- gsl_matrix * temp = gsl_matrix_calloc(B->size1, B->size2);
-
- /* init the Horner polynomial evaluation,
- * eB = 1 + B/number_of_terms; we use
- * eB to collect the partial results
- */
- gsl_matrix_memcpy(eB, B);
- gsl_matrix_scale(eB, 1.0/number_of_terms);
- gsl_matrix_add_diagonal(eB, 1.0);
- for(count = number_of_terms-1; count >= 1; --count)
- {
- /* mult_temp = 1 + B eB / count */
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, B, eB, 0.0, temp);
- gsl_matrix_scale(temp, 1.0/count);
- gsl_matrix_add_diagonal(temp, 1.0);
-
- /* transfer partial result out of temp */
- gsl_matrix_memcpy(eB, temp);
- }
-
- /* now eB holds the full result; we're done */
- gsl_matrix_free(temp);
- }
-
-
- int
- gsl_linalg_exponential_ss(
- const gsl_matrix * A,
- gsl_matrix * eA,
- gsl_mode_t mode
- )
- {
- if(A->size1 != A->size2)
- {
- GSL_ERROR("cannot exponentiate a non-square matrix", GSL_ENOTSQR);
- }
- else if(A->size1 != eA->size1 || A->size2 != eA->size2)
- {
- GSL_ERROR("exponential of matrix must have same dimension as matrix", GSL_EBADLEN);
- }
- else
- {
- int i;
- const mvl_suggestion_t sugg = obtain_suggestion(A, mode);
- const double divisor = exp(M_LN2 * sugg.j);
-
- gsl_matrix * reduced_A = gsl_matrix_alloc(A->size1, A->size2);
-
- /* decrease A by the calculated divisor */
- gsl_matrix_memcpy(reduced_A, A);
- gsl_matrix_scale(reduced_A, 1.0/divisor);
-
- /* calculate exp of reduced matrix; store in eA as temp */
- matrix_exp_series(reduced_A, eA, sugg.k);
-
- /* square repeatedly; use reduced_A for scratch */
- for(i = 0; i < sugg.j; ++i)
- {
- gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, eA, eA, 0.0, reduced_A);
- gsl_matrix_memcpy(eA, reduced_A);
- }
-
- gsl_matrix_free(reduced_A);
-
- return GSL_SUCCESS;
- }
- }
-
-