home *** CD-ROM | disk | FTP | other *** search
Unknown | 1990-05-22 | 8.6 KB |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was not able to be converted.
This format is not currently supported by dexvert.
Confidence | Program | Detection | Match Type | Support
|
---|
100%
| file
| data
| default
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 64 00 92 01 be 05 99 01 | 0a 06 a9 01 42 06 b2 01 |d.......|....B...|
|00000010| a8 06 b6 01 bd 06 bb 01 | 0b 07 c3 01 ae 07 c8 01 |........|........|
|00000020| 11 08 d4 01 57 08 db 01 | 76 08 e1 01 fb 08 ef 01 |....W...|v.......|
|00000030| 4f 09 f9 01 80 09 05 02 | 16 0a 11 02 bf 0a 26 02 |O.......|......&.|
|00000040| 07 0b 37 02 6c 0b 41 02 | c3 0b 4d 02 e8 0b 59 02 |..7.l.A.|..M...Y.|
|00000050| 56 0c 6a 02 98 0c 79 02 | d1 0c 7f 02 14 0d 88 02 |V.j...y.|........|
|00000060| 48 0d 94 02 79 0d 9d 02 | d0 0d a6 02 38 0e ac 02 |H...y...|....8...|
|00000070| 77 0e b7 02 b3 0e c0 02 | e7 0e d1 02 c4 0f db 02 |w.......|........|
|00000080| f7 0f e0 02 4b 10 ea 02 | 98 10 f3 02 c8 10 ff 02 |....K...|........|
|00000090| 07 11 0a 03 1e 11 13 03 | 59 11 1a 03 97 11 23 03 |........|Y.....#.|
|000000a0| 19 12 2e 03 72 12 33 03 | bd 12 3a 03 2b 13 45 03 |....r.3.|..:.+.E.|
|000000b0| 7a 13 50 03 b9 13 5b 03 | 0c 14 63 03 39 14 6a 03 |z.P...[.|..c.9.j.|
|000000c0| 7a 14 74 03 d8 14 7f 03 | 17 15 86 03 34 15 8f 03 |z.t.....|....4...|
|000000d0| 77 15 9f 03 b8 15 a9 03 | e9 15 b6 03 2d 16 bd 03 |w.......|....-...|
|000000e0| 70 16 c4 03 8d 16 cd 03 | d2 16 d9 03 17 17 e3 03 |p.......|........|
|000000f0| 2b 17 f1 03 3b 17 f4 03 | 8b 17 fa 03 af 17 0a 04 |+...;...|........|
|00000100| f4 17 10 04 a9 18 1d 04 | ec 18 25 04 09 19 30 04 |........|..%...0.|
|00000110| 34 19 44 04 b8 19 59 04 | 3b 1a 62 04 52 1a 6a 04 |4.D...Y.|;.b.R.j.|
|00000120| c8 1a 7d 04 18 1b 83 04 | 54 1b 93 04 84 1b 9f 04 |..}.....|T.......|
|00000130| ee 1b ac 04 01 1c b7 04 | 4e 1c c6 04 7a 1c cd 04 |........|N...z...|
|00000140| 9a 1c d3 04 e1 1c db 04 | 21 1d e6 04 65 1d f6 04 |........|!...e...|
|00000150| 86 1d 02 05 f3 1d 11 05 | 25 1e 1c 05 57 1e 27 05 |........|%...W.'.|
|00000160| 6a 1e 3c 05 b6 1e 49 05 | f6 1e 55 05 38 1f 69 05 |j.<...I.|..U.8.i.|
|00000170| 6a 1f 71 05 a7 1f 7b 05 | f2 1f 81 05 52 20 8a 05 |j.q...{.|....R ..|
|00000180| bb 20 a0 05 31 21 a9 05 | 5f 21 b0 05 d4 21 b7 05 |. ..1!..|_!...!..|
|00000190| 1d 22 61 64 64 65 6e 64 | 00 61 64 6a 61 63 65 6e |."addend|.adjacen|
|000001a0| 74 20 61 6e 67 6c 65 73 | 00 61 6c 74 69 74 75 64 |t angles|.altitud|
|000001b0| 65 00 61 72 63 00 61 72 | 65 61 00 61 76 65 72 61 |e.arc.ar|ea.avera|
|000001c0| 67 65 00 62 61 73 65 00 | 62 61 73 65 20 6e 75 6d |ge.base.|base num|
|000001d0| 62 65 72 00 62 69 73 65 | 63 74 00 63 68 6f 72 64 |ber.bise|ct.chord|
|000001e0| 00 63 69 72 63 75 6d 66 | 65 72 65 6e 63 65 00 63 |.circumf|erence.c|
|000001f0| 6c 6f 63 6b 77 69 73 65 | 00 63 6f 65 66 66 69 63 |lockwise|.coeffic|
|00000200| 69 65 6e 74 00 63 6f 6d | 6d 75 74 61 74 69 76 65 |ient.com|mutative|
|00000210| 00 63 6f 6d 70 6c 65 6d | 65 6e 74 61 72 79 20 61 |.complem|entary a|
|00000220| 6e 67 6c 65 73 00 63 6f | 6d 70 6c 65 78 20 66 72 |ngles.co|mplex fr|
|00000230| 61 63 74 69 6f 6e 00 63 | 6f 6e 67 72 75 65 6e 74 |action.c|ongruent|
|00000240| 00 63 6f 6e 73 65 63 75 | 74 69 76 65 00 63 6f 6f |.consecu|tive.coo|
|00000250| 72 64 69 6e 61 74 65 73 | 00 63 6f 75 6e 74 65 72 |rdinates|.counter|
|00000260| 63 6c 6f 63 6b 77 69 73 | 65 00 63 6f 75 6e 74 65 |clockwis|e.counte|
|00000270| 72 65 78 61 6d 70 6c 65 | 00 63 75 62 65 64 00 63 |rexample|.cubed.c|
|00000280| 79 6c 69 6e 64 65 72 00 | 64 65 6e 6f 6d 69 6e 61 |ylinder.|denomina|
|00000290| 74 6f 72 00 64 69 61 67 | 6f 6e 61 6c 00 64 69 61 |tor.diag|onal.dia|
|000002a0| 6d 65 74 65 72 00 64 69 | 67 69 74 00 64 69 6d 65 |meter.di|git.dime|
|000002b0| 6e 73 69 6f 6e 73 00 64 | 69 73 63 6f 75 6e 74 00 |nsions.d|iscount.|
|000002c0| 44 69 73 74 72 69 62 75 | 74 69 76 65 20 4c 61 77 |Distribu|tive Law|
|000002d0| 00 64 69 76 69 73 69 62 | 6c 65 00 65 64 67 65 00 |.divisib|le.edge.|
|000002e0| 65 6e 64 70 6f 69 6e 74 | 73 00 65 71 75 61 74 69 |endpoint|s.equati|
|000002f0| 6f 6e 00 65 71 75 69 6c | 61 74 65 72 61 6c 00 65 |on.equil|ateral.e|
|00000300| 71 75 69 76 61 6c 65 6e | 74 00 65 73 74 69 6d 61 |quivalen|t.estima|
|00000310| 74 65 00 65 78 63 65 73 | 73 00 65 78 70 6f 6e 65 |te.exces|s.expone|
|00000320| 6e 74 00 65 78 70 72 65 | 73 73 69 6f 6e 00 66 61 |nt.expre|ssion.fa|
|00000330| 63 65 00 66 61 63 74 6f | 72 00 68 6f 72 69 7a 6f |ce.facto|r.horizo|
|00000340| 6e 74 61 6c 00 68 79 70 | 6f 74 65 6e 75 73 65 00 |ntal.hyp|otenuse.|
|00000350| 69 6e 65 71 75 61 6c 69 | 74 79 00 69 6e 74 65 67 |inequali|ty.integ|
|00000360| 65 72 00 69 6e 76 65 72 | 74 00 69 73 6f 73 63 65 |er.inver|t.isosce|
|00000370| 6c 65 73 00 6c 69 6b 65 | 20 74 65 72 6d 73 00 6c |les.like| terms.l|
|00000380| 69 6e 65 61 72 00 6d 69 | 64 70 6f 69 6e 74 00 6e |inear.mi|dpoint.n|
|00000390| 65 67 61 74 69 76 65 20 | 6e 75 6d 62 65 72 00 6e |egative |number.n|
|000003a0| 75 6d 65 72 61 74 6f 72 | 00 6f 62 74 75 73 65 20 |umerator|.obtuse |
|000003b0| 61 6e 67 6c 65 00 6f 72 | 69 67 69 6e 00 6f 75 74 |angle.or|igin.out|
|000003c0| 70 75 74 00 70 61 72 61 | 6c 6c 65 6c 00 70 61 72 |put.para|llel.par|
|000003d0| 65 6e 74 68 65 73 65 73 | 00 70 65 72 69 6d 65 74 |entheses|.perimet|
|000003e0| 65 72 00 70 65 72 70 65 | 6e 64 69 63 75 6c 61 72 |er.perpe|ndicular|
|000003f0| 00 70 69 00 70 6c 61 6e | 65 00 70 6f 73 69 74 69 |.pi.plan|e.positi|
|00000400| 76 65 20 6e 75 6d 62 65 | 72 00 70 6f 77 65 72 00 |ve numbe|r.power.|
|00000410| 70 72 69 6d 65 20 6e 75 | 6d 62 65 72 00 70 72 6f |prime nu|mber.pro|
|00000420| 64 75 63 74 00 70 72 6f | 70 6f 72 74 69 6f 6e 00 |duct.pro|portion.|
|00000430| 50 79 74 68 61 67 6f 72 | 65 61 6e 20 54 68 65 6f |Pythagor|ean Theo|
|00000440| 72 65 6d 00 50 79 74 68 | 61 67 6f 72 65 61 6e 20 |rem.Pyth|agorean |
|00000450| 74 72 69 70 6c 65 74 73 | 00 71 75 6f 74 69 65 6e |triplets|.quotien|
|00000460| 74 00 72 61 64 69 63 61 | 6c 00 72 61 64 69 75 73 |t.radica|l.radius|
|00000470| 20 28 70 6c 2e 20 72 61 | 64 69 69 29 00 72 61 74 | (pl. ra|dii).rat|
|00000480| 69 6f 00 72 61 74 69 6f | 6e 61 6c 20 6e 75 6d 62 |io.ratio|nal numb|
|00000490| 65 72 00 72 65 63 69 70 | 72 6f 63 61 6c 73 00 72 |er.recip|rocals.r|
|000004a0| 65 73 70 65 63 74 69 76 | 65 6c 79 00 72 65 76 6f |espectiv|ely.revo|
|000004b0| 6c 75 74 69 6f 6e 00 72 | 69 67 68 74 20 74 72 69 |lution.r|ight tri|
|000004c0| 61 6e 67 6c 65 00 72 6f | 74 61 74 65 00 73 63 61 |angle.ro|tate.sca|
|000004d0| 6c 65 00 73 65 67 6d 65 | 6e 74 00 73 65 6d 69 63 |le.segme|nt.semic|
|000004e0| 69 72 63 6c 65 00 73 71 | 75 61 72 65 20 61 20 6e |ircle.sq|uare a n|
|000004f0| 75 6d 62 65 72 00 73 71 | 75 61 72 65 20 72 6f 6f |umber.sq|uare roo|
|00000500| 74 00 73 74 72 61 69 67 | 68 74 20 61 6e 67 6c 65 |t.straig|ht angle|
|00000510| 00 73 75 62 73 74 69 74 | 75 74 65 00 73 75 63 63 |.substit|ute.succ|
|00000520| 65 73 73 69 76 65 00 73 | 75 70 70 6c 65 6d 65 6e |essive.s|upplemen|
|00000530| 74 61 72 79 20 61 6e 67 | 6c 65 73 00 73 75 72 66 |tary ang|les.surf|
|00000540| 61 63 65 20 61 72 65 61 | 00 73 79 6d 6d 65 74 72 |ace area|.symmetr|
|00000550| 69 63 61 6c 00 73 79 73 | 74 65 6d 20 6f 66 20 65 |ical.sys|tem of e|
|00000560| 71 75 61 74 69 6f 6e 73 | 00 74 61 6e 67 65 6e 74 |quations|.tangent|
|00000570| 00 74 72 61 6e 73 6c 61 | 74 65 00 75 6e 69 74 73 |.transla|te.units|
|00000580| 00 76 61 72 69 61 62 6c | 65 00 76 65 72 74 65 78 |.variabl|e.vertex|
|00000590| 20 28 70 6c 2e 20 76 65 | 72 74 69 63 65 73 29 00 | (pl. ve|rtices).|
|000005a0| 76 65 72 74 69 63 61 6c | 00 76 6f 6c 75 6d 65 00 |vertical|.volume.|
|000005b0| 58 2d 61 78 69 73 00 59 | 2d 61 78 69 73 00 61 20 |X-axis.Y|-axis.a |
|000005c0| 6e 75 6d 62 65 72 20 74 | 6f 20 62 65 20 61 64 64 |number t|o be add|
|000005d0| 65 64 0d 49 6e 20 74 68 | 65 20 70 72 6f 62 6c 65 |ed.In th|e proble|
|000005e0| 6d 20 32 20 2b 20 33 20 | 3d 20 35 2c 20 74 68 65 |m 2 + 3 |= 5, the|
|000005f0| 20 32 0d 61 6e 64 20 74 | 68 65 20 33 20 61 72 65 | 2.and t|he 3 are|
|00000600| 20 61 64 64 65 6e 64 73 | 2e 00 74 77 6f 20 61 6e | addends|..two an|
|00000610| 67 6c 65 73 20 77 68 69 | 63 68 20 68 61 76 65 20 |gles whi|ch have |
|00000620| 61 20 63 6f 6d 6d 6f 6e | 0d 73 69 64 65 20 61 6e |a common|.side an|
|00000630| 64 20 61 20 63 6f 6d 6d | 6f 6e 20 76 65 72 74 65 |d a comm|on verte|
|00000640| 78 00 68 65 69 67 68 74 | 20 0d 49 6e 20 61 20 74 |x.height| .In a t|
|00000650| 72 69 61 6e 67 6c 65 2c | 20 74 68 65 20 70 65 72 |riangle,| the per|
|00000660| 70 65 6e 64 69 63 75 6c | 61 72 0d 64 69 73 74 61 |pendicul|ar.dista|
|00000670| 6e 63 65 20 66 72 6f 6d | 20 61 20 76 65 72 74 65 |nce from| a verte|
|00000680| 78 20 74 6f 20 74 68 65 | 0d 6f 70 70 6f 73 69 74 |x to the|.opposit|
|00000690| 65 20 73 69 64 65 20 69 | 73 20 69 74 73 20 61 6c |e side i|s its al|
|000006a0| 74 69 74 75 64 65 2e 00 | 61 20 73 65 67 6d 65 6e |titude..|a segmen|
|000006b0| 74 20 6f 66 20 61 20 63 | 75 72 76 65 00 74 68 65 |t of a c|urve.the|
|000006c0| 20 73 75 72 66 61 63 65 | 20 63 6f 6e 74 61 69 6e | surface| contain|
|000006d0| 65 64 20 77 69 74 68 69 | 6e 20 74 68 65 0d 62 6f |ed withi|n the.bo|
|000006e0| 75 6e 64 61 72 69 65 73 | 20 6f 66 20 61 6e 79 20 |undaries| of any |
|000006f0| 70 6c 61 6e 65 20 67 65 | 6f 6d 65 74 2d 0d 72 69 |plane ge|omet-.ri|
|00000700| 63 61 6c 20 66 69 67 75 | 72 65 00 61 20 73 69 6e |cal figu|re.a sin|
|00000710| 67 6c 65 20 76 61 6c 75 | 65 20 74 68 61 74 20 72 |gle valu|e that r|
|00000720| 65 70 72 65 73 65 6e 74 | 73 20 74 68 65 0d 67 65 |epresent|s the.ge|
|00000730| 6e 65 72 61 6c 20 73 69 | 67 6e 69 66 69 63 61 6e |neral si|gnifican|
|00000740| 63 65 20 6f 66 20 61 20 | 73 65 74 20 6f 66 0d 76 |ce of a |set of.v|
|00000750| 61 6c 75 65 73 3b 20 74 | 68 65 20 71 75 6f 74 69 |alues; t|he quoti|
|00000760| 65 6e 74 20 6f 62 74 61 | 69 6e 65 64 20 62 79 0d |ent obta|ined by.|
|00000770| 64 69 76 69 64 69 6e 67 | 20 74 68 65 20 73 75 6d |dividing| the sum|
|00000780| 20 6f 66 20 61 20 73 65 | 74 20 6f 66 0d 66 69 67 | of a se|t of.fig|
|00000790| 75 72 65 73 20 62 79 20 | 74 68 65 20 6e 75 6d 62 |ures by |the numb|
|000007a0| 65 72 20 6f 66 20 66 69 | 67 75 72 65 73 00 6f 66 |er of fi|gures.of|
|000007b0| 20 61 20 70 6c 61 6e 65 | 20 66 69 67 75 72 65 3a | a plane| figure:|
|000007c0| 20 75 73 75 61 6c 6c 79 | 20 61 20 68 6f 72 69 2d | usually| a hori-|
|000007d0| 0d 7a 6f 6e 74 61 6c 20 | 6c 69 6e 65 20 73 65 67 |.zontal |line seg|
|000007e0| 6d 65 6e 74 20 77 68 69 | 63 68 20 73 65 72 76 65 |ment whi|ch serve|
|000007f0| 73 0d 61 73 20 74 68 65 | 20 66 6f 75 6e 64 61 74 |s.as the| foundat|
|00000800| 69 6f 6e 20 66 6f 72 20 | 61 20 66 69 67 75 72 65 |ion for |a figure|
|00000810| 00 49 6e 20 61 6e 20 65 | 78 70 72 65 73 73 69 6f |.In an e|xpressio|
|00000820| 6e 20 77 69 74 68 20 61 | 6e 20 65 78 70 6f 6e 65 |n with a|n expone|
|00000830| 6e 74 2c 0d 73 75 63 68 | 20 61 73 20 33 5e 34 2c |nt,.such| as 3^4,|
|00000840| 20 33 20 69 73 20 74 68 | 65 20 62 61 73 65 20 6e | 3 is th|e base n|
|00000850| 75 6d 62 65 72 2e 00 74 | 6f 20 64 69 76 69 64 65 |umber..t|o divide|
|00000860| 20 69 6e 74 6f 20 74 77 | 6f 20 65 71 75 61 6c 20 | into tw|o equal |
|00000870| 70 61 72 74 73 00 61 20 | 73 74 72 61 69 67 68 74 |parts.a |straight|
|00000880| 20 6c 69 6e 65 20 73 65 | 67 6d 65 6e 74 20 68 61 | line se|gment ha|
|00000890| 76 69 6e 67 20 69 74 73 | 0d 65 6e 64 70 6f 69 6e |ving its|.endpoin|
|000008a0| 74 73 20 6f 6e 20 61 20 | 63 69 72 63 6c 65 0d 41 |ts on a |circle.A|
|000008b0| 20 63 68 6f 72 64 20 77 | 68 69 63 68 20 70 61 73 | chord w|hich pas|
|000008c0| 73 65 73 20 74 68 72 6f | 75 67 68 20 74 68 65 0d |ses thro|ugh the.|
|000008d0| 63 65 6e 74 65 72 20 6f | 66 20 61 20 63 69 72 63 |center o|f a circ|
|000008e0| 6c 65 20 69 73 20 63 61 | 6c 6c 65 64 20 74 68 65 |le is ca|lled the|
|000008f0| 0d 64 69 61 6d 65 74 65 | 72 2e 00 74 68 65 20 70 |.diamete|r..the p|
|00000900| 65 72 69 6d 65 74 65 72 | 20 6f 66 20 61 20 63 69 |erimeter| of a ci|
|00000910| 72 63 6c 65 0d 54 68 65 | 20 6c 65 6e 67 74 68 20 |rcle.The| length |
|00000920| 6f 66 20 74 68 65 20 63 | 69 72 63 75 6d 66 65 72 |of the c|ircumfer|
|00000930| 65 6e 63 65 0d 6f 66 20 | 61 20 63 69 72 63 6c 65 |ence.of |a circle|
|00000940| 20 69 73 20 32 7c 72 20 | 6f 72 20 7c 44 2e 00 74 | is 2|r |or |D..t|
|00000950| 68 65 20 64 69 72 65 63 | 74 69 6f 6e 20 69 6e 20 |he direc|tion in |
|00000960| 77 68 69 63 68 20 74 68 | 65 20 68 61 6e 64 73 20 |which th|e hands |
|00000970| 6f 66 0d 61 20 63 6c 6f | 63 6b 20 6d 6f 76 65 00 |of.a clo|ck move.|
|00000980| 75 73 75 61 6c 6c 79 20 | 64 65 6e 6f 74 65 73 20 |usually |denotes |
|00000990| 74 68 65 20 6e 75 6d 65 | 72 69 63 61 6c 20 70 61 |the nume|rical pa|
|000009a0| 72 74 0d 6f 66 20 61 20 | 74 65 72 6d 20 77 72 69 |rt.of a |term wri|
|000009b0| 74 74 65 6e 20 69 6e 20 | 66 72 6f 6e 74 20 6f 66 |tten in |front of|
|000009c0| 20 74 68 65 0d 6c 69 74 | 65 72 61 6c 20 70 61 72 | the.lit|eral par|
|000009d0| 74 20 28 74 68 65 20 76 | 61 72 69 61 62 6c 65 29 |t (the v|ariable)|
|000009e0| 0d 49 6e 20 74 68 65 20 | 74 65 72 6d 20 35 78 2c |.In the |term 5x,|
|000009f0| 20 35 20 69 73 20 74 68 | 65 20 6e 75 6d 65 72 69 | 5 is th|e numeri|
|00000a00| 63 61 6c 0d 63 6f 65 66 | 66 69 63 69 65 6e 74 20 |cal.coef|ficient |
|00000a10| 6f 66 20 78 2e 00 61 20 | 6c 61 77 20 6f 66 20 61 |of x..a |law of a|
|00000a20| 64 64 69 74 69 6f 6e 20 | 28 61 6e 64 20 6d 75 6c |ddition |(and mul|
|00000a30| 74 69 70 6c 69 63 61 2d | 0d 74 69 6f 6e 29 20 77 |tiplica-|.tion) w|
|00000a40| 68 69 63 68 20 73 74 61 | 74 65 73 20 74 68 61 74 |hich sta|tes that|
|00000a50| 20 74 68 65 20 73 75 6d | 0d 28 6f 72 20 70 72 6f | the sum|.(or pro|
|00000a60| 64 75 63 74 29 20 6f 66 | 20 74 77 6f 20 6e 75 6d |duct) of| two num|
|00000a70| 62 65 72 73 20 69 73 20 | 6e 6f 74 0d 61 66 66 65 |bers is |not.affe|
|00000a80| 63 74 65 64 20 62 79 20 | 72 65 76 65 72 73 69 6e |cted by |reversin|
|00000a90| 67 20 74 68 65 69 72 20 | 6f 72 64 65 72 0d 46 6f |g their |order.Fo|
|00000aa0| 72 20 65 78 61 6d 70 6c | 65 2c 20 32 20 2a 20 35 |r exampl|e, 2 * 5|
|00000ab0| 20 65 71 75 61 6c 73 20 | 35 20 2a 20 32 2e 00 74 | equals |5 * 2..t|
|00000ac0| 77 6f 20 61 6e 67 6c 65 | 73 20 77 68 69 63 68 2c |wo angle|s which,|
|00000ad0| 20 77 68 65 6e 20 61 64 | 64 65 64 0d 74 6f 67 65 | when ad|ded.toge|
|00000ae0| 74 68 65 72 2c 20 65 71 | 75 61 6c 20 61 20 72 69 |ther, eq|ual a ri|
|00000af0| 67 68 74 20 61 6e 67 6c | 65 0d 28 39 30 20 64 65 |ght angl|e.(90 de|
|00000b00| 67 72 65 65 73 29 00 61 | 20 66 72 61 63 74 69 6f |grees).a| fractio|
|00000b10| 6e 20 77 68 69 63 68 20 | 63 6f 6e 74 61 69 6e 73 |n which |contains|
|00000b20| 20 61 20 6d 69 78 65 64 | 0d 6e 75 6d 62 65 72 20 | a mixed|.number |
|00000b30| 6f 72 20 61 20 66 72 61 | 63 74 69 6f 6e 20 69 6e |or a fra|ction in|
|00000b40| 20 74 68 65 20 6e 75 6d | 65 72 2d 0d 61 74 6f 72 | the num|er-.ator|
|00000b50| 20 6f 72 20 74 68 65 20 | 64 65 6e 6f 6d 69 6e 61 | or the |denomina|
|00000b60| 74 6f 72 20 6f 72 20 62 | 6f 74 68 00 70 6c 61 6e |tor or b|oth.plan|
|00000b70| 65 20 66 69 67 75 72 65 | 73 20 77 68 69 63 68 20 |e figure|s which |
|00000b80| 63 6f 69 6e 63 69 64 65 | 20 69 6e 20 61 6c 6c 0d |coincide| in all.|
|00000b90| 63 6f 72 72 65 73 70 6f | 6e 64 69 6e 67 20 70 61 |correspo|nding pa|
|00000ba0| 72 74 73 20 61 6e 64 20 | 74 68 75 73 20 68 61 76 |rts and |thus hav|
|00000bb0| 65 0d 69 64 65 6e 74 69 | 63 61 6c 20 73 68 61 70 |e.identi|cal shap|
|00000bc0| 65 73 00 66 6f 6c 6c 6f | 77 69 6e 67 20 6f 6e 65 |es.follo|wing one|
|00000bd0| 20 61 66 74 65 72 20 61 | 6e 6f 74 68 65 72 20 69 | after a|nother i|
|00000be0| 6e 0d 6f 72 64 65 72 00 | 61 20 70 61 69 72 20 6f |n.order.|a pair o|
|00000bf0| 66 20 6e 75 6d 62 65 72 | 73 20 75 73 65 64 20 74 |f number|s used t|
|00000c00| 6f 20 73 70 65 63 69 66 | 79 0d 74 68 65 20 70 6f |o specif|y.the po|
|00000c10| 73 69 74 69 6f 6e 20 6f | 66 20 61 20 70 6f 69 6e |sition o|f a poin|
|00000c20| 74 20 6f 6e 20 61 20 74 | 77 6f 2d 0d 64 69 6d 65 |t on a t|wo-.dime|
|00000c30| 6e 73 69 6f 6e 61 6c 20 | 72 65 63 74 61 6e 67 75 |nsional |rectangu|
|00000c40| 6c 61 72 20 63 6f 6f 72 | 64 69 6e 61 74 65 0d 73 |lar coor|dinate.s|
|00000c50| 79 73 74 65 6d 00 74 68 | 65 20 64 69 72 65 63 74 |ystem.th|e direct|
|00000c60| 69 6f 6e 20 6f 70 70 6f | 73 69 74 65 20 74 6f 20 |ion oppo|site to |
|00000c70| 74 68 61 74 20 69 6e 0d | 77 68 69 63 68 20 74 68 |that in.|which th|
|00000c80| 65 20 68 61 6e 64 73 20 | 6f 66 20 61 20 63 6c 6f |e hands |of a clo|
|00000c90| 63 6b 20 6d 6f 76 65 00 | 61 6e 20 65 78 61 6d 70 |ck move.|an examp|
|00000ca0| 6c 65 20 77 68 69 63 68 | 20 70 72 6f 64 75 63 65 |le which| produce|
|00000cb0| 73 20 61 6e 0d 6f 70 70 | 6f 73 69 6e 67 20 6f 72 |s an.opp|osing or|
|00000cc0| 20 63 6f 6e 74 72 61 72 | 79 20 72 65 73 75 6c 74 | contrar|y result|
|00000cd0| 00 61 20 6e 75 6d 62 65 | 72 20 72 61 69 73 65 64 |.a numbe|r raised|
|00000ce0| 20 74 6f 20 74 68 65 20 | 74 68 69 72 64 20 70 6f | to the |third po|
|00000cf0| 77 65 72 0d 46 69 76 65 | 20 63 75 62 65 64 20 69 |wer.Five| cubed i|
|00000d00| 73 20 35 5e 33 20 6f 72 | 20 35 20 2a 20 35 20 2a |s 5^3 or| 5 * 5 *|
|00000d10| 20 35 2e 00 69 6e 20 69 | 74 73 20 63 6f 6d 6d 6f | 5..in i|ts commo|
|00000d20| 6e 20 66 6f 72 6d 2c 20 | 61 20 66 69 67 75 72 65 |n form, |a figure|
|00000d30| 0d 72 65 73 65 6d 62 6c | 69 6e 67 20 61 20 6d 65 |.resembl|ing a me|
|00000d40| 74 61 6c 20 63 61 6e 00 | 74 68 65 20 6e 75 6d 62 |tal can.|the numb|
|00000d50| 65 72 20 62 65 6c 6f 77 | 20 74 68 65 20 64 69 76 |er below| the div|
|00000d60| 69 64 69 6e 67 20 6c 69 | 6e 65 0d 69 6e 20 61 20 |iding li|ne.in a |
|00000d70| 66 72 61 63 74 69 6f 6e | 00 61 20 73 74 72 61 69 |fraction|.a strai|
|00000d80| 67 68 74 20 6c 69 6e 65 | 20 73 65 67 6d 65 6e 74 |ght line| segment|
|00000d90| 20 63 6f 6e 6e 65 63 74 | 69 6e 67 0d 61 6e 79 20 | connect|ing.any |
|00000da0| 74 77 6f 20 6e 6f 6e 2d | 61 64 6a 61 63 65 6e 74 |two non-|adjacent|
|00000db0| 20 63 6f 72 6e 65 72 73 | 0d 28 76 65 72 74 69 63 | corners|.(vertic|
|00000dc0| 65 73 29 20 6f 66 20 61 | 20 66 69 67 75 72 65 00 |es) of a| figure.|
|00000dd0| 61 20 73 74 72 61 69 67 | 68 74 20 6c 69 6e 65 20 |a straig|ht line |
|00000de0| 73 65 67 6d 65 6e 74 20 | 77 68 69 63 68 0d 70 61 |segment |which.pa|
|00000df0| 73 73 65 73 20 74 68 72 | 6f 75 67 68 20 74 68 65 |sses thr|ough the|
|00000e00| 20 63 65 6e 74 65 72 20 | 6f 66 20 61 0d 63 69 72 | center |of a.cir|
|00000e10| 63 6c 65 20 61 6e 64 20 | 68 61 73 20 69 74 73 20 |cle and |has its |
|00000e20| 65 6e 64 70 6f 69 6e 74 | 73 20 6f 6e 0d 74 68 65 |endpoint|s on.the|
|00000e30| 20 63 69 72 63 6c 65 00 | 61 6e 79 20 6f 6e 65 20 | circle.|any one |
|00000e40| 6f 66 20 74 68 65 20 74 | 65 6e 20 48 69 6e 64 75 |of the t|en Hindu|
|00000e50| 2d 41 72 61 62 69 63 0d | 6e 75 6d 65 72 61 6c 73 |-Arabic.|numerals|
|00000e60| 20 28 30 2c 31 2c 32 2c | 33 2c 34 2c 35 2c 36 2c | (0,1,2,|3,4,5,6,|
|00000e70| 37 2c 38 2c 39 29 00 6d | 65 61 73 75 72 65 6d 65 |7,8,9).m|easureme|
|00000e80| 6e 74 73 20 77 68 69 63 | 68 20 64 65 74 65 72 6d |nts whic|h determ|
|00000e90| 69 6e 65 20 74 68 65 0d | 73 69 7a 65 20 61 6e 64 |ine the.|size and|
|00000ea0| 20 73 68 61 70 65 20 6f | 66 20 61 20 66 69 67 75 | shape o|f a figu|
|00000eb0| 72 65 00 61 20 72 65 64 | 75 63 74 69 6f 6e 20 6f |re.a red|uction o|
|00000ec0| 66 20 70 72 69 63 65 20 | 75 73 75 61 6c 6c 79 0d |f price |usually.|
|00000ed0| 65 78 70 72 65 73 73 65 | 64 20 61 73 20 61 20 70 |expresse|d as a p|
|00000ee0| 65 72 63 65 6e 74 00 61 | 20 6c 61 77 20 74 68 61 |ercent.a| law tha|
|00000ef0| 74 20 73 74 61 74 65 73 | 20 74 68 61 74 20 74 68 |t states| that th|
|00000f00| 65 20 70 72 6f 64 75 63 | 74 0d 6f 66 20 61 20 6e |e produc|t.of a n|
|00000f10| 75 6d 62 65 72 20 61 6e | 64 20 74 68 65 20 73 75 |umber an|d the su|
|00000f20| 6d 20 6f 66 20 74 77 6f | 20 6e 75 6d 2d 0d 62 65 |m of two| num-.be|
|00000f30| 72 73 20 69 73 20 74 68 | 65 20 73 61 6d 65 20 61 |rs is th|e same a|
|00000f40| 73 20 74 68 65 20 73 75 | 6d 20 6f 66 20 74 68 65 |s the su|m of the|
|00000f50| 0d 70 72 6f 64 75 63 74 | 73 20 6f 62 74 61 69 6e |.product|s obtain|
|00000f60| 65 64 20 62 79 20 6d 75 | 6c 74 69 70 6c 79 69 6e |ed by mu|ltiplyin|
|00000f70| 67 0d 65 61 63 68 20 6f | 66 20 74 68 65 20 6f 74 |g.each o|f the ot|
|00000f80| 68 65 72 20 6e 75 6d 62 | 65 72 73 20 62 79 20 74 |her numb|ers by t|
|00000f90| 68 65 0d 66 69 72 73 74 | 20 6e 75 6d 62 65 72 20 |he.first| number |
|00000fa0| 0d 46 6f 72 20 65 78 61 | 6d 70 6c 65 2c 20 32 28 |.For exa|mple, 2(|
|00000fb0| 33 2a 35 29 20 3d 20 28 | 32 2a 33 29 2b 28 32 2a |3*5) = (|2*3)+(2*|
|00000fc0| 35 29 2e 00 61 6c 77 61 | 79 73 20 72 65 66 65 72 |5)..alwa|ys refer|
|00000fd0| 73 20 74 6f 20 64 69 76 | 69 73 69 6f 6e 20 77 69 |s to div|ision wi|
|00000fe0| 74 68 20 61 0d 72 65 6d | 61 69 6e 64 65 72 20 6f |th a.rem|ainder o|
|00000ff0| 66 20 7a 65 72 6f 00 61 | 20 73 74 72 61 69 67 68 |f zero.a| straigh|
|00001000| 74 20 6c 69 6e 65 20 73 | 65 67 6d 65 6e 74 20 77 |t line s|egment w|
|00001010| 68 69 63 68 20 69 73 0d | 74 68 65 20 69 6e 74 65 |hich is.|the inte|
|00001020| 72 73 65 63 74 69 6f 6e | 20 6f 66 20 61 6e 79 20 |rsection| of any |
|00001030| 74 77 6f 20 70 6c 61 6e | 65 0d 66 61 63 65 73 20 |two plan|e.faces |
|00001040| 6f 66 20 61 20 73 6f 6c | 69 64 00 61 20 74 65 72 |of a sol|id.a ter|
|00001050| 6d 20 75 73 65 64 20 74 | 6f 20 64 65 6e 6f 74 65 |m used t|o denote|
|00001060| 20 74 68 65 20 74 77 6f | 0d 70 6f 69 6e 74 73 20 | the two|.points |
|00001070| 77 68 69 63 68 20 64 65 | 74 65 72 6d 69 6e 65 20 |which de|termine |
|00001080| 61 20 73 74 72 61 69 67 | 68 74 0d 6c 69 6e 65 20 |a straig|ht.line |
|00001090| 73 65 67 6d 65 6e 74 00 | 61 20 73 74 61 74 65 6d |segment.|a statem|
|000010a0| 65 6e 74 20 6f 66 20 65 | 71 75 61 6c 69 74 79 20 |ent of e|quality |
|000010b0| 62 65 74 77 65 65 6e 0d | 74 77 6f 20 65 78 70 72 |between.|two expr|
|000010c0| 65 73 73 69 6f 6e 73 00 | 64 65 6e 6f 74 65 73 20 |essions.|denotes |
|000010d0| 74 68 61 74 20 61 6c 6c | 20 73 69 64 65 73 20 6f |that all| sides o|
|000010e0| 66 20 61 20 67 69 76 65 | 6e 0d 66 69 67 75 72 65 |f a give|n.figure|
|000010f0| 20 68 61 76 65 20 74 68 | 65 20 73 61 6d 65 20 6d | have th|e same m|
|00001100| 65 61 73 75 72 65 00 70 | 6f 73 73 65 73 73 69 6e |easure.p|ossessin|
|00001110| 67 20 65 71 75 61 6c 20 | 76 61 6c 75 65 00 61 20 |g equal |value.a |
|00001120| 71 75 69 63 6b 20 6d 65 | 6e 74 61 6c 20 6f 70 65 |quick me|ntal ope|
|00001130| 72 61 74 69 6f 6e 20 74 | 6f 20 61 72 72 69 76 65 |ration t|o arrive|
|00001140| 0d 61 74 20 61 6e 20 61 | 70 70 72 6f 78 69 6d 61 |.at an a|pproxima|
|00001150| 74 65 20 76 61 6c 75 65 | 00 74 68 61 74 20 70 61 |te value|.that pa|
|00001160| 72 74 20 6f 66 20 61 6e | 20 61 6d 6f 75 6e 74 20 |rt of an| amount |
|00001170| 77 68 69 63 68 20 69 73 | 0d 6d 6f 72 65 20 74 68 |which is|.more th|
|00001180| 61 6e 20 61 20 67 69 76 | 65 6e 20 66 69 78 65 64 |an a giv|en fixed|
|00001190| 20 76 61 6c 75 65 00 61 | 20 6e 75 6d 65 72 61 6c | value.a| numeral|
|000011a0| 20 77 68 69 63 68 20 69 | 6e 64 69 63 61 74 65 73 | which i|ndicates|
|000011b0| 20 68 6f 77 20 6d 61 6e | 79 0d 74 69 6d 65 73 20 | how man|y.times |
|000011c0| 61 20 63 65 72 74 61 69 | 6e 20 76 61 6c 75 65 20 |a certai|n value |
|000011d0| 73 68 6f 75 6c 64 20 62 | 65 0d 6d 75 6c 74 69 70 |should b|e.multip|
|000011e0| 6c 69 65 64 20 62 79 20 | 69 74 73 65 6c 66 0d 49 |lied by |itself.I|
|000011f0| 6e 20 74 68 65 20 65 78 | 70 72 65 73 73 69 6f 6e |n the ex|pression|
|00001200| 20 78 5e 34 2c 20 34 20 | 69 73 20 74 68 65 0d 65 | x^4, 4 |is the.e|
|00001210| 78 70 6f 6e 65 6e 74 2e | 00 61 20 67 65 6e 65 72 |xponent.|.a gener|
|00001220| 61 6c 20 74 65 72 6d 20 | 75 73 65 64 20 74 6f 20 |al term |used to |
|00001230| 64 65 6e 6f 74 65 20 61 | 6e 79 0d 6d 61 74 68 65 |denote a|ny.mathe|
|00001240| 6d 61 74 69 63 61 6c 20 | 74 65 72 6d 0d 34 61 20 |matical |term.4a |
|00001250| 61 6e 64 20 35 62 20 2b | 20 33 20 61 72 65 20 62 |and 5b +| 3 are b|
|00001260| 6f 74 68 20 65 78 70 72 | 65 73 73 69 6f 6e 73 2e |oth expr|essions.|
|00001270| 20 00 74 68 65 20 6e 61 | 6d 65 20 66 6f 72 20 61 | .the na|me for a|
|00001280| 6e 79 20 6f 66 20 74 68 | 65 20 62 6f 75 6e 64 69 |ny of th|e boundi|
|00001290| 6e 67 0d 73 75 72 66 61 | 63 65 73 20 6f 66 20 61 |ng.surfa|ces of a|
|000012a0| 20 73 6f 6c 69 64 0d 41 | 20 63 75 62 65 20 68 61 | solid.A| cube ha|
|000012b0| 73 20 73 69 78 20 66 61 | 63 65 73 2e 00 61 6e 79 |s six fa|ces..any|
|000012c0| 20 6f 66 20 74 68 65 20 | 6e 75 6d 62 65 72 73 20 | of the |numbers |
|000012d0| 6d 75 6c 74 69 70 6c 69 | 65 64 20 74 6f 0d 66 6f |multipli|ed to.fo|
|000012e0| 72 6d 20 61 20 70 72 6f | 64 75 63 74 0d 54 6f 20 |rm a pro|duct.To |
|000012f0| 66 61 63 74 6f 72 20 61 | 20 6e 75 6d 62 65 72 20 |factor a| number |
|00001300| 67 65 6e 65 72 61 6c 6c | 79 20 6d 65 61 6e 73 0d |generall|y means.|
|00001310| 74 6f 20 66 69 6e 64 20 | 69 74 73 20 70 72 69 6d |to find |its prim|
|00001320| 65 20 66 61 63 74 6f 72 | 73 2e 00 67 6f 69 6e 67 |e factor|s..going|
|00001330| 20 61 63 72 6f 73 73 20 | 61 73 20 6f 70 70 6f 73 | across |as oppos|
|00001340| 65 64 20 74 6f 20 75 70 | 20 61 6e 64 0d 64 6f 77 |ed to up| and.dow|
|00001350| 6e 3b 20 66 6f 6c 6c 6f | 77 69 6e 67 20 74 68 65 |n; follo|wing the|
|00001360| 20 64 69 72 65 63 74 69 | 6f 6e 20 6f 66 0d 74 68 | directi|on of.th|
|00001370| 65 20 68 6f 72 69 7a 6f | 6e 00 74 68 65 20 73 69 |e horizo|n.the si|
|00001380| 64 65 20 6f 66 20 61 20 | 72 69 67 68 74 20 74 72 |de of a |right tr|
|00001390| 69 61 6e 67 6c 65 20 77 | 68 69 63 68 0d 69 73 20 |iangle w|hich.is |
|000013a0| 6f 70 70 6f 73 69 74 65 | 20 74 68 65 20 72 69 67 |opposite| the rig|
|000013b0| 68 74 20 61 6e 67 6c 65 | 00 61 20 73 74 61 74 65 |ht angle|.a state|
|000013c0| 6d 65 6e 74 20 74 68 61 | 74 20 61 6e 20 65 78 70 |ment tha|t an exp|
|000013d0| 72 65 73 73 69 6f 6e 20 | 69 73 0d 67 72 65 61 74 |ression |is.great|
|000013e0| 65 72 20 74 68 61 6e 2c | 20 6c 65 73 73 20 74 68 |er than,| less th|
|000013f0| 61 6e 2c 20 6f 72 20 6e | 6f 74 0d 65 71 75 61 6c |an, or n|ot.equal|
|00001400| 20 74 6f 20 61 6e 6f 74 | 68 65 72 00 61 20 70 6f | to anot|her.a po|
|00001410| 73 69 74 69 76 65 20 6f | 72 20 6e 65 67 61 74 69 |sitive o|r negati|
|00001420| 76 65 20 77 68 6f 6c 65 | 20 6e 75 6d 62 65 72 2c |ve whole| number,|
|00001430| 0d 6f 72 20 7a 65 72 6f | 00 74 6f 20 66 6f 72 6d |.or zero|.to form|
|00001440| 20 74 68 65 20 72 65 63 | 69 70 72 6f 63 61 6c 20 | the rec|iprocal |
|00001450| 6f 66 20 61 20 6e 75 6d | 62 65 72 0d 54 68 65 20 |of a num|ber.The |
|00001460| 72 65 63 69 70 72 6f 63 | 61 6c 20 6f 66 20 35 20 |reciproc|al of 5 |
|00001470| 69 73 20 2f 31 2f 35 2f | 2e 00 68 61 76 69 6e 67 |is /1/5/|..having|
|00001480| 20 74 77 6f 20 65 71 75 | 61 6c 20 73 69 64 65 73 | two equ|al sides|
|00001490| 2c 20 65 69 74 68 65 72 | 20 74 77 6f 0d 6c 65 67 |, either| two.leg|
|000014a0| 73 20 6f 66 20 61 20 74 | 72 69 61 6e 67 6c 65 20 |s of a t|riangle |
|000014b0| 6f 72 20 74 77 6f 0d 6e | 6f 6e 70 61 72 61 6c 6c |or two.n|onparall|
|000014c0| 65 6c 20 73 69 64 65 73 | 20 6f 66 20 61 20 74 72 |el sides| of a tr|
|000014d0| 61 70 65 7a 6f 69 64 00 | 74 65 72 6d 73 20 77 69 |apezoid.|terms wi|
|000014e0| 74 68 20 69 64 65 6e 74 | 69 63 61 6c 20 76 61 72 |th ident|ical var|
|000014f0| 69 61 62 6c 65 73 2c 0d | 73 6f 6d 65 74 69 6d 65 |iables,.|sometime|
|00001500| 73 20 63 61 6c 6c 65 64 | 20 73 69 6d 69 6c 61 72 |s called| similar|
|00001510| 20 74 65 72 6d 73 00 70 | 65 72 74 61 69 6e 69 6e | terms.p|ertainin|
|00001520| 67 20 74 6f 20 73 74 72 | 61 69 67 68 74 20 6c 69 |g to str|aight li|
|00001530| 6e 65 73 00 61 20 70 6f | 69 6e 74 20 65 71 75 69 |nes.a po|int equi|
|00001540| 64 69 73 74 61 6e 74 20 | 66 72 6f 6d 20 74 68 65 |distant |from the|
|00001550| 20 74 77 6f 0d 65 6e 64 | 70 6f 69 6e 74 73 20 6f | two.end|points o|
|00001560| 66 20 61 20 67 69 76 65 | 6e 20 6c 69 6e 65 20 73 |f a give|n line s|
|00001570| 65 67 6d 65 6e 74 00 61 | 6e 79 20 6e 75 6d 62 65 |egment.a|ny numbe|
|00001580| 72 20 6c 65 73 73 20 74 | 68 61 6e 20 7a 65 72 6f |r less t|han zero|
|00001590| 20 28 74 6f 20 74 68 65 | 0d 6c 65 66 74 20 6f 66 | (to the|.left of|
|000015a0| 20 7a 65 72 6f 20 6f 6e | 20 61 20 6e 75 6d 62 65 | zero on| a numbe|
|000015b0| 72 20 6c 69 6e 65 29 00 | 74 68 65 20 6e 75 6d 62 |r line).|the numb|
|000015c0| 65 72 20 61 62 6f 76 65 | 20 74 68 65 20 64 69 76 |er above| the div|
|000015d0| 69 64 69 6e 67 20 6c 69 | 6e 65 0d 69 6e 20 61 20 |iding li|ne.in a |
|000015e0| 66 72 61 63 74 69 6f 6e | 00 61 6e 20 61 6e 67 6c |fraction|.an angl|
|000015f0| 65 20 77 68 6f 73 65 20 | 6d 65 61 73 75 72 65 20 |e whose |measure |
|00001600| 69 73 20 67 72 65 61 74 | 65 72 0d 74 68 61 6e 20 |is great|er.than |
|00001610| 39 30 20 62 75 74 20 6c | 65 73 73 20 74 68 61 6e |90 but l|ess than|
|00001620| 20 31 38 30 20 64 65 67 | 72 65 65 73 00 74 68 65 | 180 deg|rees.the|
|00001630| 20 73 74 61 72 74 69 6e | 67 20 70 6f 69 6e 74 20 | startin|g point |
|00001640| 6f 66 20 61 20 67 72 61 | 70 68 20 6f 72 0d 63 6f |of a gra|ph or.co|
|00001650| 6f 72 64 69 6e 61 74 65 | 20 73 79 73 74 65 6d 3b |ordinate| system;|
|00001660| 20 74 68 65 20 7a 65 72 | 6f 20 70 6f 69 6e 74 00 | the zer|o point.|
|00001670| 73 6f 6d 65 74 68 69 6e | 67 20 70 72 6f 64 75 63 |somethin|g produc|
|00001680| 65 64 3b 20 61 20 72 65 | 73 75 6c 74 00 70 65 72 |ed; a re|sult.per|
|00001690| 74 61 69 6e 69 6e 67 20 | 74 6f 20 6c 69 6e 65 73 |taining |to lines|
|000016a0| 20 6f 72 20 6c 69 6e 65 | 0d 73 65 67 6d 65 6e 74 | or line|.segment|
|000016b0| 73 20 74 68 61 74 20 61 | 72 65 20 65 76 65 72 79 |s that a|re every|
|000016c0| 77 68 65 72 65 0d 65 71 | 75 69 64 69 73 74 61 6e |where.eq|uidistan|
|000016d0| 74 00 74 68 65 20 73 79 | 6d 62 6f 6c 73 20 28 20 |t.the sy|mbols ( |
|000016e0| 29 0d 4f 70 65 72 61 74 | 69 6f 6e 73 20 69 6e 20 |).Operat|ions in |
|000016f0| 70 61 72 65 6e 74 68 65 | 73 65 73 20 73 68 6f 75 |parenthe|ses shou|
|00001700| 6c 64 0d 62 65 20 70 65 | 72 66 6f 72 6d 65 64 20 |ld.be pe|rformed |
|00001710| 66 69 72 73 74 2e 00 74 | 68 65 20 64 69 73 74 61 |first..t|he dista|
|00001720| 6e 63 65 20 61 72 6f 75 | 6e 64 00 61 74 20 72 69 |nce arou|nd.at ri|
|00001730| 67 68 74 20 61 6e 67 6c | 65 73 00 74 68 65 20 72 |ght angl|es.the r|
|00001740| 61 74 69 6f 20 6f 66 20 | 74 68 65 20 63 69 72 63 |atio of |the circ|
|00001750| 75 6d 66 65 72 65 6e 63 | 65 20 6f 66 0d 61 20 63 |umferenc|e of.a c|
|00001760| 69 72 63 6c 65 20 74 6f | 20 69 74 73 20 64 69 61 |ircle to| its dia|
|00001770| 6d 65 74 65 72 0d 7c 20 | 3d 20 33 2e 31 34 31 36 |meter.| |= 3.1416|
|00001780| 20 6f 72 20 2f 32 32 2f | 37 2f 00 61 20 74 77 6f | or /22/|7/.a two|
|00001790| 2d 64 69 6d 65 6e 73 69 | 6f 6e 61 6c 20 67 65 6f |-dimensi|onal geo|
|000017a0| 6d 65 74 72 69 63 0d 73 | 75 72 66 61 63 65 00 61 |metric.s|urface.a|
|000017b0| 6e 79 20 6e 75 6d 62 65 | 72 20 67 72 65 61 74 65 |ny numbe|r greate|
|000017c0| 72 20 74 68 61 6e 20 7a | 65 72 6f 20 28 74 6f 0d |r than z|ero (to.|
|000017d0| 74 68 65 20 72 69 67 68 | 74 20 6f 66 20 7a 65 72 |the righ|t of zer|
|000017e0| 6f 20 6f 6e 20 61 20 6e | 75 6d 62 65 72 20 6c 69 |o on a n|umber li|
|000017f0| 6e 65 29 00 74 68 65 20 | 70 72 6f 64 75 63 74 20 |ne).the |product |
|00001800| 72 65 73 75 6c 74 69 6e | 67 20 66 72 6f 6d 20 74 |resultin|g from t|
|00001810| 68 65 20 63 6f 6e 2d 0d | 74 69 6e 75 65 64 20 6d |he con-.|tinued m|
|00001820| 75 6c 74 69 70 6c 69 63 | 61 74 69 6f 6e 20 6f 66 |ultiplic|ation of|
|00001830| 20 61 20 6e 75 6d 62 65 | 72 0d 62 79 20 69 74 73 | a numbe|r.by its|
|00001840| 65 6c 66 2c 20 69 6e 64 | 69 63 61 74 65 64 20 62 |elf, ind|icated b|
|00001850| 79 20 61 6e 20 65 78 70 | 6f 6e 65 6e 74 0d 49 6e |y an exp|onent.In|
|00001860| 20 32 5e 33 2c 20 74 68 | 65 20 33 20 69 6e 64 69 | 2^3, th|e 3 indi|
|00001870| 63 61 74 65 73 20 74 68 | 65 20 70 6f 77 65 72 0d |cates th|e power.|
|00001880| 28 6e 75 6d 62 65 72 20 | 6f 66 20 74 69 6d 65 73 |(number |of times|
|00001890| 20 32 20 69 73 20 6d 75 | 6c 74 69 70 6c 69 65 64 | 2 is mu|ltiplied|
|000018a0| 29 2e 0d 32 2a 32 2a 32 | 00 61 20 6e 61 74 75 72 |)..2*2*2|.a natur|
|000018b0| 61 6c 20 6e 75 6d 62 65 | 72 20 77 68 6f 73 65 20 |al numbe|r whose |
|000018c0| 6f 6e 6c 79 20 64 69 76 | 69 2d 0d 73 6f 72 73 20 |only div|i-.sors |
|000018d0| 61 72 65 20 31 20 61 6e | 64 20 74 68 65 20 6e 75 |are 1 an|d the nu|
|000018e0| 6d 62 65 72 20 69 74 73 | 65 6c 66 00 74 68 65 20 |mber its|elf.the |
|000018f0| 72 65 73 75 6c 74 20 6f | 66 20 6d 75 6c 74 69 70 |result o|f multip|
|00001900| 6c 69 63 61 74 69 6f 6e | 00 61 20 73 74 61 74 65 |lication|.a state|
|00001910| 6d 65 6e 74 20 6f 66 20 | 65 71 75 61 6c 69 74 79 |ment of |equality|
|00001920| 20 62 65 74 77 65 65 6e | 0d 74 77 6f 20 72 61 74 | between|.two rat|
|00001930| 69 6f 73 00 49 6e 20 61 | 6e 79 20 72 69 67 68 74 |ios.In a|ny right|
|00001940| 20 74 72 69 61 6e 67 6c | 65 2c 20 74 68 65 20 73 | triangl|e, the s|
|00001950| 75 6d 20 6f 66 0d 74 68 | 65 20 73 71 75 61 72 65 |um of.th|e square|
|00001960| 73 20 6f 66 20 74 68 65 | 20 74 77 6f 20 73 69 64 |s of the| two sid|
|00001970| 65 73 20 69 73 0d 65 71 | 75 61 6c 20 69 6e 20 76 |es is.eq|ual in v|
|00001980| 61 6c 75 65 20 74 6f 20 | 74 68 65 20 73 71 75 61 |alue to |the squa|
|00001990| 72 65 20 6f 66 0d 74 68 | 65 20 68 79 70 6f 74 65 |re of.th|e hypote|
|000019a0| 6e 75 73 65 2e 20 28 61 | 5e 32 20 2b 20 62 5e 32 |nuse. (a|^2 + b^2|
|000019b0| 20 3d 20 63 5e 32 29 00 | 63 6f 6d 62 69 6e 61 74 | = c^2).|combinat|
|000019c0| 69 6f 6e 73 20 6f 66 20 | 6d 65 61 73 75 72 65 6d |ions of |measurem|
|000019d0| 65 6e 74 73 20 77 68 69 | 63 68 0d 6f 63 63 75 72 |ents whi|ch.occur|
|000019e0| 20 6f 66 74 65 6e 20 69 | 6e 20 72 69 67 68 74 20 | often i|n right |
|000019f0| 74 72 69 61 6e 67 6c 65 | 73 0d 53 6f 6d 65 20 61 |triangle|s.Some a|
|00001a00| 72 65 20 33 2d 34 2d 35 | 2c 20 35 2d 31 32 2d 31 |re 3-4-5|, 5-12-1|
|00001a10| 33 2c 20 38 2d 31 35 2d | 31 37 2c 0d 37 2d 32 34 |3, 8-15-|17,.7-24|
|00001a20| 2d 32 35 20 28 61 6e 64 | 20 74 68 65 69 72 20 6d |-25 (and| their m|
|00001a30| 75 6c 74 69 70 6c 65 73 | 29 2e 00 74 68 65 20 72 |ultiples|)..the r|
|00001a40| 65 73 75 6c 74 20 6f 66 | 20 64 69 76 69 73 69 6f |esult of| divisio|
|00001a50| 6e 00 74 68 65 20 73 79 | 6d 62 6f 6c 20 77 68 69 |n.the sy|mbol whi|
|00001a60| 63 68 20 69 6e 64 69 63 | 61 74 65 73 20 74 68 61 |ch indic|ates tha|
|00001a70| 74 20 61 0d 72 6f 6f 74 | 20 69 73 20 74 6f 20 62 |t a.root| is to b|
|00001a80| 65 20 74 61 6b 65 6e 20 | 28 40 35 40 29 0d 54 68 |e taken |(@5@).Th|
|00001a90| 65 20 6e 75 6d 62 65 72 | 20 75 6e 64 65 72 20 74 |e number| under t|
|00001aa0| 68 65 20 72 61 64 69 63 | 61 6c 20 73 69 67 6e 0d |he radic|al sign.|
|00001ab0| 69 73 20 63 61 6c 6c 65 | 64 20 74 68 65 20 72 61 |is calle|d the ra|
|00001ac0| 64 69 63 61 6e 64 2e 00 | 74 68 65 20 73 74 72 61 |dicand..|the stra|
|00001ad0| 69 67 68 74 20 6c 69 6e | 65 20 66 72 6f 6d 20 74 |ight lin|e from t|
|00001ae0| 68 65 20 63 65 6e 74 65 | 72 0d 6f 66 20 61 20 63 |he cente|r.of a c|
|00001af0| 69 72 63 6c 65 20 74 6f | 20 61 6e 79 20 70 6f 69 |ircle to| any poi|
|00001b00| 6e 74 20 6f 6e 20 69 74 | 73 0d 63 69 72 63 75 6d |nt on it|s.circum|
|00001b10| 66 65 72 65 6e 63 65 00 | 74 68 65 20 71 75 6f 74 |ference.|the quot|
|00001b20| 69 65 6e 74 20 6f 66 20 | 74 77 6f 20 69 6e 74 65 |ient of |two inte|
|00001b30| 67 65 72 73 20 75 73 65 | 64 0d 74 6f 20 63 6f 6d |gers use|d.to com|
|00001b40| 70 61 72 65 20 74 77 6f | 20 71 75 61 6e 74 69 74 |pare two| quantit|
|00001b50| 69 65 73 00 61 6e 79 20 | 6e 75 6d 62 65 72 20 77 |ies.any |number w|
|00001b60| 68 69 63 68 20 63 61 6e | 20 62 65 20 65 78 70 72 |hich can| be expr|
|00001b70| 65 73 73 65 64 0d 61 73 | 20 61 20 66 72 61 63 74 |essed.as| a fract|
|00001b80| 69 6f 6e 00 74 77 6f 20 | 6e 75 6d 62 65 72 73 20 |ion.two |numbers |
|00001b90| 77 68 6f 73 65 20 70 72 | 6f 64 75 63 74 20 65 71 |whose pr|oduct eq|
|00001ba0| 75 61 6c 73 20 31 3b 0d | 61 6c 73 6f 20 63 61 6c |uals 1;.|also cal|
|00001bb0| 6c 65 64 20 6d 75 6c 74 | 69 70 6c 69 63 61 74 69 |led mult|iplicati|
|00001bc0| 76 65 20 69 6e 76 65 72 | 73 65 73 0d 54 68 65 20 |ve inver|ses.The |
|00001bd0| 72 65 63 69 70 72 6f 63 | 61 6c 20 6f 66 20 2f 33 |reciproc|al of /3|
|00001be0| 2f 35 2f 20 69 73 20 2f | 35 2f 33 2f 2e 00 69 6e |/5/ is /|5/3/..in|
|00001bf0| 20 74 68 65 20 6f 72 64 | 65 72 20 67 69 76 65 6e | the ord|er given|
|00001c00| 00 75 73 75 61 6c 6c 79 | 20 72 65 66 65 72 73 20 |.usually| refers |
|00001c10| 74 6f 20 6f 6e 65 20 63 | 6f 6d 70 6c 65 74 65 0d |to one c|omplete.|
|00001c20| 6d 6f 76 65 6d 65 6e 74 | 20 6f 66 20 61 6e 79 20 |movement| of any |
|00001c30| 66 69 67 75 72 65 20 61 | 62 6f 75 74 20 61 0d 63 |figure a|bout a.c|
|00001c40| 65 6e 74 65 72 20 6f 72 | 20 61 78 69 73 00 61 20 |enter or| axis.a |
|00001c50| 70 6c 61 6e 65 20 74 72 | 69 61 6e 67 6c 65 20 63 |plane tr|iangle c|
|00001c60| 6f 6e 74 61 69 6e 69 6e | 67 20 6f 6e 65 0d 72 69 |ontainin|g one.ri|
|00001c70| 67 68 74 20 61 6e 67 6c | 65 00 74 6f 20 74 75 72 |ght angl|e.to tur|
|00001c80| 6e 20 61 62 6f 75 74 20 | 61 6e 20 61 78 69 73 20 |n about |an axis |
|00001c90| 6f 72 20 63 65 6e 74 65 | 72 00 74 68 65 20 72 61 |or cente|r.the ra|
|00001ca0| 74 69 6f 20 69 6e 20 77 | 68 69 63 68 20 61 20 67 |tio in w|hich a g|
|00001cb0| 72 61 70 68 69 63 0d 72 | 65 70 72 65 73 65 6e 74 |raphic.r|epresent|
|00001cc0| 61 74 69 6f 6e 20 64 65 | 70 69 63 74 73 20 74 68 |ation de|picts th|
|00001cd0| 65 20 72 65 61 6c 0d 73 | 69 74 75 61 74 69 6f 6e |e real.s|ituation|
|00001ce0| 00 61 20 66 69 6e 69 74 | 65 20 70 6f 72 74 69 6f |.a finit|e portio|
|00001cf0| 6e 20 6f 66 20 61 20 73 | 74 72 61 69 67 68 74 0d |n of a s|traight.|
|00001d00| 6c 69 6e 65 2c 20 6d 65 | 61 73 75 72 61 62 6c 65 |line, me|asurable|
|00001d10| 20 69 6e 20 6c 69 6e 65 | 61 72 20 75 6e 69 74 73 | in line|ar units|
|00001d20| 00 65 69 74 68 65 72 20 | 6f 66 20 74 77 6f 20 68 |.either |of two h|
|00001d30| 61 6c 76 65 73 20 69 6e | 74 6f 20 77 68 69 63 68 |alves in|to which|
|00001d40| 20 61 0d 63 69 72 63 6c | 65 20 69 73 20 64 69 76 | a.circl|e is div|
|00001d50| 69 64 65 64 20 62 79 20 | 69 74 73 20 64 69 61 6d |ided by |its diam|
|00001d60| 65 74 65 72 00 74 6f 20 | 6d 75 6c 74 69 70 6c 79 |eter.to |multiply|
|00001d70| 20 74 68 65 20 6e 75 6d | 62 65 72 20 62 79 20 69 | the num|ber by i|
|00001d80| 74 73 65 6c 66 00 74 68 | 65 20 66 61 63 74 6f 72 |tself.th|e factor|
|00001d90| 20 6f 66 20 61 20 6e 75 | 6d 62 65 72 20 77 68 69 | of a nu|mber whi|
|00001da0| 63 68 2c 20 77 68 65 6e | 0d 6d 75 6c 74 69 70 6c |ch, when|.multipl|
|00001db0| 69 65 64 20 62 79 20 69 | 74 73 65 6c 66 2c 20 79 |ied by i|tself, y|
|00001dc0| 69 65 6c 64 73 20 74 68 | 65 0d 67 69 76 65 6e 20 |ields th|e.given |
|00001dd0| 6e 75 6d 62 65 72 0d 54 | 68 65 20 73 71 75 61 72 |number.T|he squar|
|00001de0| 65 20 72 6f 6f 74 20 6f | 66 20 32 35 20 69 73 20 |e root o|f 25 is |
|00001df0| 35 2e 00 61 6e 20 61 6e | 67 6c 65 20 65 71 75 61 |5..an an|gle equa|
|00001e00| 6c 20 74 6f 20 74 77 6f | 20 72 69 67 68 74 20 61 |l to two| right a|
|00001e10| 6e 67 6c 65 73 0d 6f 72 | 20 31 38 30 20 64 65 67 |ngles.or| 180 deg|
|00001e20| 72 65 65 73 00 74 6f 20 | 72 65 70 6c 61 63 65 20 |rees.to |replace |
|00001e30| 61 20 76 61 72 69 61 62 | 6c 65 20 74 65 72 6d 20 |a variab|le term |
|00001e40| 77 69 74 68 0d 61 20 6e | 75 6d 65 72 69 63 61 6c |with.a n|umerical|
|00001e50| 20 76 61 6c 75 65 00 74 | 68 6f 73 65 20 77 68 69 | value.t|hose whi|
|00001e60| 63 68 20 66 6f 6c 6c 6f | 77 00 74 77 6f 20 61 6e |ch follo|w.two an|
|00001e70| 67 6c 65 73 20 77 68 69 | 63 68 2c 20 77 68 65 6e |gles whi|ch, when|
|00001e80| 20 61 64 64 65 64 0d 74 | 6f 67 65 74 68 65 72 2c | added.t|ogether,|
|00001e90| 20 65 71 75 61 6c 20 61 | 20 73 74 72 61 69 67 68 | equal a| straigh|
|00001ea0| 74 20 61 6e 67 6c 65 0d | 28 31 38 30 20 64 65 67 |t angle.|(180 deg|
|00001eb0| 72 65 65 73 29 00 74 68 | 65 20 74 6f 74 61 6c 20 |rees).th|e total |
|00001ec0| 6f 66 20 74 68 65 20 61 | 72 65 61 73 20 6f 66 20 |of the a|reas of |
|00001ed0| 65 61 63 68 0d 66 61 63 | 65 20 6f 66 20 61 20 73 |each.fac|e of a s|
|00001ee0| 6f 6c 69 64 20 67 65 6f | 6d 65 74 72 69 63 20 66 |olid geo|metric f|
|00001ef0| 69 67 75 72 65 00 6f 66 | 20 62 61 6c 61 6e 63 65 |igure.of| balance|
|00001f00| 64 20 70 72 6f 70 6f 72 | 74 69 6f 6e 73 3b 20 63 |d propor|tions; c|
|00001f10| 61 70 61 62 6c 65 0d 6f | 66 20 64 69 76 69 73 69 |apable.o|f divisi|
|00001f20| 6f 6e 20 69 6e 74 6f 20 | 74 77 6f 20 6c 69 6b 65 |on into |two like|
|00001f30| 20 68 61 6c 76 65 73 00 | 61 20 73 65 74 20 6f 66 | halves.|a set of|
|00001f40| 20 6c 69 6e 65 61 72 20 | 65 71 75 61 74 69 6f 6e | linear |equation|
|00001f50| 73 20 77 69 74 68 20 74 | 68 65 0d 73 61 6d 65 20 |s with t|he.same |
|00001f60| 76 61 72 69 61 62 6c 65 | 73 00 61 20 73 74 72 61 |variable|s.a stra|
|00001f70| 69 67 68 74 20 6c 69 6e | 65 20 68 61 76 69 6e 67 |ight lin|e having|
|00001f80| 20 6f 6e 6c 79 20 6f 6e | 65 0d 70 6f 69 6e 74 20 | only on|e.point |
|00001f90| 69 6e 20 63 6f 6d 6d 6f | 6e 20 77 69 74 68 20 61 |in commo|n with a|
|00001fa0| 20 63 75 72 76 65 00 74 | 6f 20 74 72 61 6e 73 66 | curve.t|o transf|
|00001fb0| 65 72 20 66 72 6f 6d 20 | 77 6f 72 64 73 20 69 6e |er from |words in|
|00001fc0| 74 6f 20 61 20 73 65 74 | 0d 6f 66 20 6d 61 74 68 |to a set|.of math|
|00001fd0| 65 6d 61 74 69 63 61 6c | 20 73 79 6d 62 6f 6c 73 |ematical| symbols|
|00001fe0| 20 28 61 6e 64 20 76 69 | 63 65 0d 76 65 72 73 61 | (and vi|ce.versa|
|00001ff0| 29 00 72 65 70 72 65 73 | 65 6e 74 73 20 61 20 73 |).repres|ents a s|
|00002000| 74 61 6e 64 61 72 64 20 | 6f 66 20 6d 65 61 73 75 |tandard |of measu|
|00002010| 72 65 2d 0d 6d 65 6e 74 | 2c 20 73 75 63 68 20 61 |re-.ment|, such a|
|00002020| 73 20 69 6e 63 68 2c 20 | 66 6f 6f 74 2c 20 70 6f |s inch, |foot, po|
|00002030| 75 6e 64 2c 0d 65 74 63 | 2e 2c 20 77 68 65 6e 20 |und,.etc|., when |
|00002040| 6e 6f 6e 65 20 69 73 20 | 73 70 65 63 69 66 69 65 |none is |specifie|
|00002050| 64 00 74 68 65 20 70 6c | 61 63 65 20 68 6f 6c 64 |d.the pl|ace hold|
|00002060| 65 72 20 6f 72 20 75 6e | 6b 6e 6f 77 6e 20 76 61 |er or un|known va|
|00002070| 6c 75 65 0d 69 6e 20 61 | 6e 20 65 78 70 72 65 73 |lue.in a|n expres|
|00002080| 73 69 6f 6e 20 6f 72 20 | 65 71 75 61 74 69 6f 6e |sion or |equation|
|00002090| 0d 49 6e 20 74 68 65 20 | 65 78 70 72 65 73 73 69 |.In the |expressi|
|000020a0| 6f 6e 20 33 78 2c 20 78 | 20 69 73 20 74 68 65 20 |on 3x, x| is the |
|000020b0| 0d 76 61 72 69 61 62 6c | 65 2e 00 74 68 65 20 70 |.variabl|e..the p|
|000020c0| 6f 69 6e 74 20 6f 66 20 | 69 6e 74 65 72 73 65 63 |oint of |intersec|
|000020d0| 74 69 6f 6e 20 6f 66 20 | 74 68 65 0d 6c 69 6e 65 |tion of |the.line|
|000020e0| 20 73 65 67 6d 65 6e 74 | 73 20 77 68 69 63 68 20 | segment|s which |
|000020f0| 66 6f 72 6d 20 61 0d 67 | 65 6f 6d 65 74 72 69 63 |form a.g|eometric|
|00002100| 20 66 69 67 75 72 65 0d | 54 68 65 20 63 6f 72 6e | figure.|The corn|
|00002110| 65 72 73 20 6f 66 20 61 | 20 72 65 63 74 61 6e 67 |ers of a| rectang|
|00002120| 6c 65 20 61 72 65 0d 76 | 65 72 74 69 63 65 73 2e |le are.v|ertices.|
|00002130| 00 75 70 20 6f 72 20 64 | 6f 77 6e 2c 20 61 74 20 |.up or d|own, at |
|00002140| 72 69 67 68 74 20 61 6e | 67 6c 65 73 20 74 6f 0d |right an|gles to.|
|00002150| 74 68 65 20 68 6f 72 69 | 7a 6f 6e 74 61 6c 00 73 |the hori|zontal.s|
|00002160| 70 61 63 65 20 6f 63 63 | 75 70 69 65 64 3b 20 6f |pace occ|upied; o|
|00002170| 62 74 61 69 6e 65 64 20 | 61 73 20 74 68 65 0d 70 |btained |as the.p|
|00002180| 72 6f 64 75 63 74 20 6f | 66 20 74 68 65 20 6d 65 |roduct o|f the me|
|00002190| 61 73 75 72 65 73 20 6f | 66 20 74 68 65 0d 74 68 |asures o|f the.th|
|000021a0| 72 65 65 20 64 69 6d 65 | 6e 73 69 6f 6e 73 20 6f |ree dime|nsions o|
|000021b0| 66 20 61 20 73 6f 6c 69 | 64 0d 28 6c 65 6e 67 74 |f a soli|d.(lengt|
|000021c0| 68 20 2a 20 77 69 64 74 | 68 20 2a 20 68 65 69 67 |h * widt|h * heig|
|000021d0| 68 74 29 00 74 68 65 20 | 68 6f 72 69 7a 6f 6e 74 |ht).the |horizont|
|000021e0| 61 6c 20 61 78 69 73 20 | 69 6e 20 61 20 74 77 6f |al axis |in a two|
|000021f0| 2d 0d 64 69 6d 65 6e 73 | 69 6f 6e 61 6c 20 72 65 |-.dimens|ional re|
|00002200| 63 74 61 6e 67 75 6c 61 | 72 0d 63 6f 6f 72 64 69 |ctangula|r.coordi|
|00002210| 6e 61 74 65 20 73 79 73 | 74 65 6d 20 00 74 68 65 |nate sys|tem .the|
|00002220| 20 76 65 72 74 69 63 61 | 6c 20 61 78 69 73 20 69 | vertica|l axis i|
|00002230| 6e 20 61 20 74 77 6f 2d | 0d 64 69 6d 65 6e 73 69 |n a two-|.dimensi|
|00002240| 6f 6e 61 6c 20 72 65 63 | 74 61 6e 67 75 6c 61 72 |onal rec|tangular|
|00002250| 0d 63 6f 6f 72 64 69 6e | 61 74 65 20 73 79 73 74 |.coordin|ate syst|
|00002260| 65 6d 00 | |em. | |
+--------+-------------------------+-------------------------+--------+--------+