home *** CD-ROM | disk | FTP | other *** search
- /******************************************************************************
- * BspCoxDB.c - Bspline evaluation using Cox - de Boor recursive algorithm. *
- *******************************************************************************
- * Written by Gershon Elber, Aug. 90. *
- ******************************************************************************/
-
- #ifdef __MSDOS__
- #include <stdlib.h>
- #endif /* __MSDOS__ */
-
- #include <ctype.h>
- #include <stdio.h>
- #include <string.h>
- #include "cagd_loc.h"
-
- /******************************************************************************
- * Returns a pointer to a static data, holding the value of the curve at given *
- * parametric location t. The curve is assumed to be non uniform spline. *
- * Uses the recursive Cox de Boor algorithm, to evaluate the spline. *
- ******************************************************************************/
- CagdRType *BspCrvEvalCoxDeBoor(CagdCrvStruct *Crv, CagdRType t)
- {
- static CagdRType Pt[CAGD_MAX_PT_COORD];
- CagdBType
- IsNotRational = !CAGD_IS_RATIONAL_CRV(Crv);
- CagdRType *p, *BasisFunc;
- int i, j, l, IndexFirst,
- k = Crv -> Order,
- MaxCoord = CAGD_NUM_OF_PT_COORD(Crv -> PType);
-
- BasisFunc = BspCrvCoxDeBoorBasis(Crv -> KnotVector, k, Crv -> Length,
- t, &IndexFirst);
-
- /* And finally multiply the basis functions with the control polygon. */
- for (i = IsNotRational; i <= MaxCoord; i++) {
- Pt[i] = 0;
- p = Crv -> Points[i];
- for (j = IndexFirst, l = 0; l < k; )
- Pt[i] += p[j++] * BasisFunc[l++];
- }
-
- return Pt;
- }
-
- /******************************************************************************
- * Returns a pointer to a vector of size order, holding values of the non zero *
- * basis functions of a given curve at given parametric location t. *
- * This vector SHOULD NOT BE FREED. Although it is dynamically allocated, the *
- * returned pointer does not point to the beginning of this memory and it will *
- * be maintained by this routine (i.e. it will be freed next time this routine *
- * is called). *
- * IndexFirst returns the index of first non zero basis function for given t. *
- * The curve is assumed to be non uniform bspline. *
- * Uses the recursive Cox de Boor algorithm, to evaluate the spline. *
- * Algorithm: *
- * Use the following recursion relation with B(i,0) == 1. *
- * *
- * t - t(i) t(i+k) - t *
- * B(i,k) = --------------- B(i,k-1) + --------------- B(i+1,k-1) *
- * t(i+k-1) - t(i) t(i+k) - t(i+1) *
- * *
- * Starting with constant spline (k == 1) only one basis func. is non zero and *
- * equal to one. This is the constant spline spanning interval t(i)..t(i+1) *
- * such that t(i) <= t and t(i+1) > t. We then raise this constant spline *
- * to the Crv order and finding in this process all the basis functions that *
- * are non zero in t for order Order. Sound limple hah!? *
- ******************************************************************************/
- CagdRType *BspCrvCoxDeBoorBasis(CagdRType *KnotVector, int Order, int Len,
- CagdRType t, int *IndexFirst)
- {
- static CagdRType *B = NULL;
- CagdRType s1, s2, *BasisFunc;
- int i, l,
- KVLen = Order + Len,
- Index = BspKnotLastIndexLE(KnotVector, KVLen, t);
-
- if (!BspKnotParamInDomain(KnotVector, Len, Order, t))
- FATAL_ERROR(CAGD_ERR_T_NOT_IN_CRV);
-
- /* Starting the recursion from constant splines - one spline is non */
- /* zero and is equal to one. This is the spline that starts at Index. */
- /* As We are going to reference index -1 we increment the buffer by one */
- /* and save 0.0 at index -1. We then initialize the constant spline */
- /* values - all are zero but the one from t(i) to t(i+1). */
- if (B != NULL) CagdFree((VoidPtr) B);
- BasisFunc = B = (CagdRType *) CagdMalloc(sizeof(CagdRType) * (1 + Order));
- *BasisFunc++ = 0.0;
- if (Index >= Len + Order - 1) {
- /* We are at the end of the parametric domain and this is open */
- /* end comdition - simply return last point. */
- for (i = 0; i < Order; i++)
- BasisFunc[i] = (CagdRType) (i == Order - 1);
-
- *IndexFirst = Len - Order;
- return BasisFunc;
- }
- else
- for (i = 0; i < Order; i++) BasisFunc[i] = (CagdRType) (i == 0);
-
- /* Here is the tricky part. we raise these constant splines to the */
- /* required order of the curve Crv for the given parameter t. There are */
- /* at most order non zero function at param. value t. These functions */
- /* start at Index-order+1 up to Index (order functions overwhole). */
- for (i = 2; i <= Order; i++) { /* Goes through all orders... */
- for (l = i - 1; l >= 0; l--) { /* And all basis funcs. of order i. */
- s1 = (KnotVector[Index + l] - KnotVector[Index + l - i + 1]);
- s1 = APX_EQ(s1, 0.0) ? 0.0 : (t - KnotVector[Index + l - i + 1]) / s1;
- s2 = (KnotVector[Index + l + 1] - KnotVector[Index + l - i + 2]);
- s2 = APX_EQ(s2, 0.0) ? 0.0 : (KnotVector[Index + l + 1] - t) / s2;
-
- BasisFunc[l] = s1 * BasisFunc[l - 1] + s2 * BasisFunc[l];
- }
- }
-
- *IndexFirst = Index - Order + 1;
- return BasisFunc;
- }
-