home *** CD-ROM | disk | FTP | other *** search
- Xref: sparky sci.math.num-analysis:3974 sci.engr:2538 sci.engr.mech:845
- Path: sparky!uunet!portal!lll-winken!uwm.edu!zaphod.mps.ohio-state.edu!howland.reston.ans.net!paladin.american.edu!gatech!rpi!ghost.dsi.unimi.it!univ-lyon1.fr!scsing.switch.ch!bernina!nmr.lpc.ethz.ch!tilo
- From: tilo@nmr.lpc.ethz.ch (Tilo Levante)
- Newsgroups: sci.math.num-analysis,sci.engr,sci.engr.mech
- Subject: Re: Algorithm(s) need for Bessel functions
- Message-ID: <1993Jan26.172944.26069@bernina.ethz.ch>
- Date: 26 Jan 93 17:29:44 GMT
- References: <1993Jan25.201447.2082@athena.mit.edu> <1993Jan26.100935.113272@eratu.rz.uni-konstanz.de>
- Sender: news@bernina.ethz.ch (USENET News System)
- Organization: NMR-Group, Physical Chemistry Lab., ETH-Zuerich, Switzerland
- Lines: 34
-
- In article <1993Jan26.100935.113272@eratu.rz.uni-konstanz.de>, vaxinf@V36.CHEMIE.UNI-KONSTANZ.DE () writes:
- |>
- |> In article <1993Jan25.201447.2082@athena.mit.edu>, cai@athena.mit.edu (Liang-Wu Cai) writes:
- |> |>Dear netter,
- |> |>
- |> |> I am in need (badly) of an accurate algorithm Bessel functions of various
- |> |>kinds with real argument and integer order. What I need actually is a
- |> |>algorithm which is able to provide the result with at least 7 significant
- |> |>digits for J_n (z) and Y_n (z) with n <=100 and z <= 100.
- |>
- |> Look into Abromowitz/Stegun Handbook of Mathamatical Functions:
- |>
- |> 1.) set j(100)=0
- |> 2.) set j(99)=1
- |> 3.) do recursion to j(0)
- |> 4.) calculate the true j(0) in order to define a normalisation faktor
- |> 5.) Multiply all value with that factor
- |>
- |> You get all values J(0)...j(100) in that way.
- |>
- |> Eberhard Heuser-Hofmann
-
- This algorithm (Miller algorithm)
- is based on a recurrence relation for besselfunctions.
- You can find a detailed description in
-
- Computation with recurrence relations
- / Jet Wimp
- Boston a.o. : Pitman, 1984
- XII, 310 p. : tab. ; 24 cm
- (Applicable mathematics series)
- ISBN 0-273-08508-5
-
- Tilo
-