home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!srvr1.engin.umich.edu!saimiri.primate.wisc.edu!usenet.coe.montana.edu!ogicse!das-news.harvard.edu!das-news!smith
- From: smith@minerva.harvard.edu (Steven Smith)
- Newsgroups: sci.math.num-analysis
- Subject: Re: Exploiting Structure of Hamiltonian Matrices
- Message-ID: <SMITH.93Jan22084422@minerva.harvard.edu>
- Date: 22 Jan 93 13:44:22 GMT
- Article-I.D.: minerva.SMITH.93Jan22084422
- References: <1jo3i5INNnru@nyquist.usc.edu>
- Sender: usenet@das.harvard.edu (Network News)
- Organization: Harvard Robotics Lab, Harvard University
- Lines: 30
- In-Reply-To: goh@nyquist.usc.edu's message of 21 Jan 1993 22:17:41 -0800
-
- goh@nyquist.usc.edu (K.C.Goh) writes:
-
- > Does anybody out there know of any numerical routines
- > for the computation of the eigenvalues of a Hamiltonian
- > matrix (or the zeros of a Hamiltonian Pencil) which exploit
- > the Hamiltonian eigenvalue (zero) structure?
-
- See C. F. Van Loan (1984), A symplectic method for approximating all
- the eigenvalues of a Hamiltonian matrix, Lin. Alg. Appl., 61, 233-252,
- and the references therein. There is also more recent work by
- Bunse-Gerstner et al. I have never encountered any public domain
- software for these type of problems.
-
- By the way, these papers define the symplectic group to be the group
- of transformations leaving invariant the form
- _ _ _
- x y + x y + . . . + x y
- 1 1 2 2 n n
- _ *
- (y denotes the complex conjugate of y). This is really the group SO(n);
- the symplectic group leaves invariant the form
-
- x y + x y + . . . + x y .
- 1 1 2 2 n n
-
- I don't know if this matters to you; they do this because the
- Hermitian pops up in the (complex) Riccati equation.
-
-
- Steven Smith
-