home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!utcsri!skule.ecf!torn!spool.mu.edu!cass.ma02.bull.com!mips2!bull.bull.fr!julienas!seti!sophia.inria.fr
- From: Monique.Teillaud@sophia.inria.fr (Monique Teillaud-Devillers)
- Newsgroups: fnet.seminaires
- Subject: seminaire Prisme
- Message-ID: <4878@seti.inria.fr>
- Date: 21 Jan 93 09:57:30 GMT
- Sender: news@seti.inria.fr
- Distribution: fnet
- Lines: 26
- Approved: werner@margaux.inria.fr
- Jour: 28/01/93
- Lieu: INRIA Sophia-Antipolis
-
-
-
-
- Jeudi 28 janvier
- 10h
-
- INRIA Sophia-Antipolis
- salle B118
-
- Otfried Schwarzkopf (Universite d'Utrecht)
- Piecewise Linear Paths Among Convex Obstacles
-
-
- Let B be a set of $n$ arbitrary (possibly intersecting) convex
- obstacles in $R^d$. It is shown that any two points which can be
- connected by a path avoiding the obstacles can also be connected by a
- path consisting of $O(n^{(d-1)\lfloor{d/2+1}\rfloor})$ segments. The
- bound cannot be improved below $\Omega(n^d)$; thus in $R^3$, the
- answer is between $n^3$ and $n^4$. For disjoint obstacles, a
- $\Theta(n)$ bound is proved. By a well-known reduction, the general
- case result also upper bounds the complexity for a translational
- motion of an arbitrary convex robot among convex obstacles.
- In the planar case, asymptotically tight bounds and efficient
- algorithms are given.
-
- (travail effectue en collaboration avec Mark de Berg et Jiri Matousek)
-