home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.physics
- Path: sparky!uunet!usc!wupost!gumby!destroyer!wsu-cs!igor.physics.wayne.edu!atems
- From: atems@igor.physics.wayne.edu (Dale Atems)
- Subject: Re: The instantaneous transfer of information in QM calculations
- Message-ID: <1993Jan12.011324.3713@cs.wayne.edu>
- Sender: usenet@cs.wayne.edu (Usenet News)
- Organization: Wayne State University, Detroit, MI
- References: <1993Jan10.164016.16419@cs.wayne.edu> <1993Jan11.031132.1521@cs.wayne.edu> <485@mtnmath.UUCP>
- Date: Tue, 12 Jan 1993 01:13:24 GMT
- Lines: 111
-
- In article <485@mtnmath.UUCP> paul@mtnmath.UUCP (Paul Budnik) writes:
- >In article <1993Jan11.031132.1521@cs.wayne.edu>, atems@igor.physics.wayne.edu (Dale Atems) writes:
- >[...]
- >> Consider an experimental setup designed to test the version of Bell's
- >> inequality that applies to spin-half particles in the singlet state. [...]
- >>
- >> Bell's inequality for this situation takes the form of a relationship
- >> between correlation functions < (S(1,a) S(2,b) > where S(i,a) is the
- >> component of particle i's spin along a, and similarly for b. To determine
- >> such a correlation function experimentally, *in principle* all you need
- >> to do is repeat the experiment a sufficient number of times, measuring
- >> the spins of both particles and forming the product S(1,a) S(2,b) for
- >> each pair, sum the products and divide by the number of pairs detected.
- >> I don't see where you need to assume anything about what happens to the
- >> wave function of one particle after the other is detected. One simply
- >> measures spin components and computes a statistical average.
- >
- >Of course you do not need to make any such assumption to analyze the
- >statistics of the experimental results. You do need to use the
- >collapse postulate in some from to prove what quantum mechanics *predicts*
- >in such an experiment.
-
- Please show me where. In this case QM predicts a certain value for the
- quantity P(a,b) = < (S(1,a) S(2,b) >, this is the expectation value
- for the product of the spin components in a singlet pair. What you
- need to predict is P(a,b), P(a,c), and P(b,c). For some choices of the
- unit vectors a,b,c, the QM predictions (using only the linear theory)
- violate Bell's inequality.
-
- >What is crucial about Bell's inequality is that
- >the observation at one site was *affected* by the *measurement* made
- >at the other site.
-
- This cannot be said with certainty. The most one can say, I believe,
- is that the correlations are inconsistent with the assumptions that all
- the observables are fixed before measurement, *and* that no
- observation affected the outcome of a distant measurement. The
- violations of Bell's inequality mean that at least one of these
- assumptions is incorrect.
-
- >If it were simply a matter of the two particles having
- >parameters that were correlated at the time they split apart you *cannot*
- >get a violation of Bell's inequality.
-
- Agreed.
-
- >To get the QM prediction you have
- >to use more then the assumption that the two particles are in a singlet
- >state.
-
- No, I believe this is all you need.
-
- >If you just used this assumption then the probability density of
- >a detection at one site would be independent of the observations at the
- >other site because those observations cannot influence the distant probability
- >density. You have to assume that when you make an observation at one site
- >this *changes* the probability density you use in your *calculations* at
- >the other site to be in accord with information you obtained from that
- >distant measurement.
-
- I don't use the probability density for a detection at all. Everything
- is expressed in terms of average values of products of spin
- components. I suspect we are having trouble communicating because of
- the difference in experimental setups -- in the photon experiment, the
- detection of a photon that has passed through a polarizer means that
- it was "found" to be in a particular linear polarization state.
-
- >[...]
- >> Of course, a finding that the observed correlations violate Bell's
- >> inequality says nothing about locality if they could have been produced
- >> by an exchange of information. As I understand it, the basic
- >> premise behind Bell's proof is that all components of each particle's
- >> spin are fixed when the singlet state is prepared and do not change
- >> afterward. [...]
- >
- >This is dead wrong. If it were true you would not get a violation of
- >Bell's inequality.
-
- Yes, that is the point! If the assumptions behind Bell's proof are
- correct, you *shouldn't* see his inequality violated. If you do even
- though no subluminal signal could have influenced the results, then
- either you are dealing with superluminal signals -- instantaneous
- transfer of information in some frame -- or else it is not the case
- that all spin components were determined when the state was prepared.
-
- >There is a real instantaneous information transfer
- >whenever there is a violation of Bell's inequality. In quantum
- >mechanics it is not a form of information transfer that can be used for
- >communication, but a distant experimental setting instantaneously influences
- >the observational results at a local site. This comes from the central
- >assumption of quantum mechanics that a state *does not exist* until it
- >is observed.
-
- In QM it is not information transfer at all. The correlations are
- inconsistent only with assumptions that the standard interpretation of
- QM denies.
-
- >All that is *determined* from the assumption that the two
- >photons are in a singlet state is that observations of them will have a
- >certain correlation. The actual orientation of the spins *is not determined*
- >until an observation is made. If you assume it is predetermined you
- >have a hidden variables theory and will get results in contradiction with
- >the predictions of QM.
-
- Agreed.
-
- ------
- Dale Atems
- Wayne State University, Detroit, MI
- Department of Physics and Astronomy
- atems@igor.physics.wayne.edu
-